A302764 Pascal-like triangle with A000012 as the left border and A080956 as the right border.
1, 1, 1, 1, 2, 0, 1, 3, 2, -2, 1, 4, 5, 0, -5, 1, 5, 9, 5, -5, -9, 1, 6, 14, 14, 0, -14, -14, 1, 7, 20, 28, 14, -14, -28, -20, 1, 8, 27, 48, 42, 0, -42, -48, -27, 1, 9, 35, 75, 90, 42, -42, -90, -75, -35, 1, 10, 44, 110, 165, 132, 0, -132, -165, -110, -44
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 2, 0; 1, 3, 2, -2; 1, 4, 5, 0, -5; 1, 5, 9, 5, -5, -9; 1, 6, 14, 14, 0, -14, -14; 1, 7, 20, 28, 14, -14, -28, -20; ...
Programs
-
PARI
T(n,k) = if (k==0, 1, if (k==n, (n+1)*(2-n)/2, if (k>n, 0, T(n-1,k) + T(n-1,k-1)))); tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n, k), ", ")); print); \\ Michel Marcus, Apr 21 2018
Formula
T(n,k) = T(n-1,k) + T(n-1,k-1) with T(n, 0) = 1 and T(n, n) = (n+1)*(2-n)/2.
Comments