A302832 Expansion of (1/(1 - x))*Product_{k>=1} (1 + x^k)^k.
1, 2, 4, 9, 17, 33, 61, 110, 193, 335, 570, 955, 1582, 2586, 4185, 6706, 10646, 16757, 26178, 40587, 62503, 95637, 145445, 219929, 330766, 494898, 736858, 1092027, 1611185, 2367079, 3463490, 5048009, 7329935, 10605211, 15290942, 21973641, 31475620, 44946859, 63991639, 90842560
Offset: 0
Keywords
Links
Programs
-
Maple
b:= proc(n) option remember; add((-1)^(n/d+1)*d^2, d=numtheory[divisors](n)) end: g:= proc(n) option remember; `if`(n=0, 1, add(b(k)*g(n-k), k=1..n)/n) end: a:= proc(n) option remember; `if`(n<0, 0, a(n-1)+g(n)) end: seq(a(n), n=0..40); # Alois P. Heinz, Apr 13 2018
-
Mathematica
nmax = 39; CoefficientList[Series[1/(1 - x) Product[(1 + x^k)^k, {k, 1, nmax}], {x, 0, nmax}], x] nmax = 39; CoefficientList[1/(1 - x) Series[Exp[Sum[(-1)^(k + 1) x^k/(k (1 - x^k)^2), {k, 1, nmax}]], {x, 0, nmax}], x]
Formula
G.f.: (1/(1 - x))*exp(Sum_{k>=1} (-1)^(k+1)*x^k/(k*(1 - x^k)^2)).
From Vaclav Kotesovec, Apr 13 2018: (Start)
a(n) ~ exp((3/2)^(4/3) * Zeta(3)^(1/3) * n^(2/3)) / (2^(5/12) * 3^(2/3) * sqrt(Pi) * Zeta(3)^(1/6) * n^(1/3)).
a(n) ~ (2*n/(3*Zeta(3)))^(1/3) * A026007(n).
a(n) ~ erfi((3/2)^(2/3) * Zeta(3)^(1/6) * n^(1/3)) / 2^(13/12).
(End)
Comments