cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A163355 Permutation of integers for constructing Hilbert curve in N x N grid.

Original entry on oeis.org

0, 1, 3, 2, 14, 15, 13, 12, 4, 7, 5, 6, 8, 11, 9, 10, 16, 19, 17, 18, 20, 21, 23, 22, 30, 29, 31, 28, 24, 25, 27, 26, 58, 57, 59, 56, 54, 53, 55, 52, 60, 61, 63, 62, 50, 51, 49, 48, 32, 35, 33, 34, 36, 37, 39, 38, 46, 45, 47, 44, 40, 41, 43, 42, 234, 235, 233, 232, 236, 239
Offset: 0

Views

Author

Antti Karttunen, Jul 29 2009

Keywords

Crossrefs

Inverse: A163356. A163357 & A163359 give two variants of Hilbert curve in N x N grid. Cf. also A163332.
Second and third "powers": A163905, A163915.
In range [A000302(n-1)..A024036(n)] of this permutation, the number of cycles is given by A163910, number of fixed points seems to be given by A147600(n-1) (fixed points themselves: A163901). Max. cycle sizes is given by A163911 and LCM's of all cycle sizes by A163912.

Programs

  • Maple
    A057300 := proc(n)
        option remember;
        `if`(n=0, 0, procname(iquo(n, 4, 'r'))*4+[0, 2, 1, 3][r+1])
    end proc:
    A163355 := proc(n)
        option remember ;
        local d,base4,i,r ;
        if n <= 1 then
            return n ;
        end if;
        base4 := convert(n,base,4) ;
        d := op(-1,base4) ;
        i := nops(base4)-1 ;
        r := n-d*4^i ;
        if ( d=1 and type(i,even) ) or ( d=2 and type(i,odd)) then
            4^i+procname(A057300(r)) ;
        elif d= 3 then
            2*4^i+procname(A057300(r)) ;
        else
            3*4^i+procname(4^i-1-r) ;
        end if;
    end proc:
    seq(A163355(n),n=0..100) ; # R. J. Mathar, Nov 22 2023
  • PARI
    A057300(n) = { my(t=1, s=0); while(n>0,  if(1==(n%4),n++,if(2==(n%4),n--)); s += (n%4)*t; n >>= 2; t <<= 2); (s); };
    A163355(n) = if(!n,n,my(i = (#binary(n)-1)\2, f = 4^i, d = (n\f)%4, r = (n%f)); if(((1==d)&&!(i%2))||((2==d)&&(i%2)), f+A163355(A057300(r)), if(3==d,f+f+A163355(A057300(r)), (3*f)+A163355(f-1-r)))); \\ Antti Karttunen, Apr 14 2018

Formula

a(0) = 0, and given d=1, 2 or 3, then a((d*(4^i))+r)
= (4^i) + a(A057300(r)), if d=1 and i is even, or if d=2 and i is odd
= 2*(4^i) + a(A057300(r)), if d=3,
= 3*(4^i) + a((4^i)-1-r) in other cases.
From Alan Michael Gómez Calderón, May 06 2025: (Start)
a(3*A000695(n)) = 2*A000695(n);
a(3*(A000695(n) + 2^A000695(2*m))) = 2*(A000695(n) + 2^A000695(2*m)) for m >= 2;
a((2 + 16^n)*2^(-1 + 4*m)) = 4^(2*(n + m) - 1) + (11*16^m - 2)/3. (End)

Extensions

Links to further derived sequences added by Antti Karttunen, Sep 21 2009

A207901 Let S_k denote the first 2^k terms of this sequence and let b_k be the smallest positive integer that is not in S_k, also let R_k equal S_k read in reverse order; then the numbers b_k*R_k are the next 2^k terms.

Original entry on oeis.org

1, 2, 6, 3, 12, 24, 8, 4, 20, 40, 120, 60, 15, 30, 10, 5, 35, 70, 210, 105, 420, 840, 280, 140, 28, 56, 168, 84, 21, 42, 14, 7, 63, 126, 378, 189, 756, 1512, 504, 252, 1260, 2520, 7560, 3780, 945, 1890, 630, 315, 45, 90, 270, 135, 540, 1080, 360, 180, 36, 72, 216
Offset: 0

Views

Author

Paul D. Hanna, Feb 21 2012

Keywords

Comments

A permutation of the positive integers (but please note the starting offset: 0-indexed).
This sequence is a variant of A052330.
Shares with A064736, A302350, etc. the property that a(n) is either a divisor or a multiple of a(n+1). - Peter Munn, Apr 11 2018 on SeqFan-list. Note: A302781 is another such "divisor-or-multiple permutation" satisfying the same property. - Antti Karttunen, Apr 14 2018
The offset is 0 since S_0 = {1} denotes the first 2^0 = 1 terms. - Daniel Forgues, Apr 13 2018
This is "Fermi-Dirac piano played with Gray code", as indicated by Peter Munn's Apr 11 2018 formula. Compare also to A303771 and A302783. - Antti Karttunen, May 16 2018

Examples

			Start with [1]; appending 2*[1] results in [1,2];
appending 3*[2,1] results in [1,2, 6,3];
appending 4*[3,6,2,1] results in [1,2,6,3, 12,24,8,4];
appending 5*[4,8,24,12,3,6,2,1]
results in [1,2,6,3,12,24,8,4, 20,40,120,60,15,30,10,5];
next append 7*[5,10,30,15,60,120,40,20,4,8,24,12,3,6,2,1],
multiplying by 7 since 6 is already found in the previous terms.
Each new factor is in A050376: [2,3,4,5,7,9,11,13,16,17,19,23,25,29,...].
Continue in this way to generate all the terms of this sequence.
		

Crossrefs

Cf. A064736, A281978, A282291, A302350, A302781, A302783, A303751, A303771, A304085, A304531, A304755 for other divisor-or-multiple permutations or conjectured permutations.
Cf. A302033 (a squarefree analog), A304745.

Programs

  • Mathematica
    a = {1}; Do[a = Join[a, Reverse[a]*Min[Complement[Range[Max[a] + 1], a]]], {n, 1, 6}]; a (* Ivan Neretin, May 09 2015 *)
  • PARI
    {A050376(n)= local(m, c, k, p); n--; if(n<=0, 2*(n==0), c=0; m=2; while( cA050376(n-1)*Vec(Polrev(A))));A[n]}
    for(n=0,63,print1(a(n),",")) \\ edited for offsets by Michel Marcus, Apr 04 2019
    
  • PARI
    up_to_e = 13;
    v050376 = vector(up_to_e);
    A050376(n) = v050376[n];
    ispow2(n) = (n && !bitand(n,n-1));
    i = 0; for(n=1,oo,if(ispow2(isprimepower(n)), i++; v050376[i] = n); if(i == up_to_e,break));
    A052330(n) = { my(p=1,i=1); while(n>0, if(n%2, p *= A050376(i)); i++; n >>= 1); (p); };
    A003188(n) = bitxor(n, n>>1);
    A207901(n) = A052330(A003188(n)); \\ Antti Karttunen, Apr 13 2018

Formula

a(n) = A052330(A003188(n)). - Peter Munn, Apr 11 2018
a(n) = A302781(A302843(n)) = A302783(A064706(n)). - Antti Karttunen, Apr 16 2018
a(n+1) = A059897(a(n), A050376(A001511(n+1))). - Peter Munn, Apr 01 2019

Extensions

Offset changed from 1 to 0 by Antti Karttunen, Apr 13 2018

A302845 Permutation of nonnegative integers: a(n) = A163355(A064707(n)).

Original entry on oeis.org

0, 1, 3, 2, 15, 14, 12, 13, 5, 6, 4, 7, 10, 9, 11, 8, 21, 20, 22, 23, 16, 19, 17, 18, 26, 27, 25, 24, 31, 28, 30, 29, 63, 62, 60, 61, 48, 49, 51, 50, 58, 57, 59, 56, 53, 54, 52, 55, 42, 43, 41, 40, 47, 44, 46, 45, 37, 36, 38, 39, 32, 35, 33, 34, 255, 254, 252, 253, 240, 241, 243, 242, 250, 249, 251, 248, 245, 246, 244
Offset: 0

Views

Author

Antti Karttunen, Apr 14 2018

Keywords

Crossrefs

Programs

Formula

a(n) = A163355(A064707(n)).
a(n) = A302843(A006068(n)).

A302844 Permutation of nonnegative integers: a(n) = A003188(A163356(n)).

Original entry on oeis.org

0, 1, 2, 3, 12, 15, 14, 13, 10, 9, 8, 11, 4, 5, 6, 7, 24, 27, 26, 25, 30, 31, 28, 29, 18, 19, 16, 17, 22, 21, 20, 23, 40, 43, 42, 41, 46, 47, 44, 45, 34, 35, 32, 33, 38, 37, 36, 39, 56, 57, 58, 59, 52, 55, 54, 53, 50, 49, 48, 51, 60, 61, 62, 63, 192, 195, 194, 193, 198, 199, 196, 197, 202, 203, 200, 201, 206, 205
Offset: 0

Views

Author

Antti Karttunen, Apr 14 2018

Keywords

Comments

When A207901, which is a multiplicative walk permutation, is composed from the right with this permutation, the result is A302781, another multiplicative walk permutation.

Crossrefs

Programs

Formula

a(n) = A003188(A163356(n)).
a(n) = A006068(A302846(n)).
Showing 1-4 of 4 results.