cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A302998 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = [x^(n^2)] (1 + theta_3(x))^k/(2^k*(1 - x)), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 11, 11, 5, 1, 1, 6, 20, 29, 17, 6, 1, 1, 7, 36, 70, 54, 26, 7, 1, 1, 8, 63, 157, 165, 99, 35, 8, 1, 1, 9, 106, 337, 482, 357, 163, 45, 9, 1, 1, 10, 171, 702, 1319, 1203, 688, 239, 58, 10, 1, 1, 11, 265, 1420, 3390, 3819, 2673, 1154, 344, 73, 11, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2018

Keywords

Comments

A(n,k) is the number of nonnegative solutions to (x_1)^2 + (x_2)^2 + ... + (x_k)^2 <= n^2.

Examples

			Square array begins:
  1,  1,   1,   1,    1,     1,  ...
  1,  2,   3,   4,    5,     6,  ...
  1,  3,   6,  11,   20,    36,  ...
  1,  4,  11,  29,   70,   157,  ...
  1,  5,  17,  54,  165,   482,  ...
  1,  6,  26,  99,  357,  1203,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[(1 + EllipticTheta[3, 0, x])^k/(2^k (1 - x)), {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[1/(1 - x) Sum[x^i^2, {i, 0, n}]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
  • PARI
    T(n,k)={if(k==0, 1, polcoef(((sum(j=0, n, x^(j^2)) + O(x*x^(n^2)))^k)/(1-x), n^2))} \\ Andrew Howroyd, Sep 14 2019

Formula

A(n,k) = [x^(n^2)] (1/(1 - x))*(Sum_{j>=0} x^(j^2))^k.

A302995 a(n) = [x^(n^2)] (theta_3(x) - 1)^n/(2^n*(1 - x)), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 1, 1, 7, 32, 177, 1269, 9263, 74452, 652710, 6078048, 60447082, 631870024, 6915613084, 79113376037, 941759419159, 11630647314564, 148799595377384, 1966441829785081, 26793749867965515, 375812005722920406, 5416574818546042067, 80123280319100908258, 1214860029446181979357
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2018

Keywords

Comments

a(n) = number of positive solutions to (x_1)^2 + (x_2)^2 + ... + (x_n)^2 <= n^2.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(EllipticTheta[3, 0, x] - 1)^n/(2^n (1 - x)), {x, 0, n^2}], {n, 0, 23}]
    Join[{1}, Table[SeriesCoefficient[1/(1 - x) Sum[x^k^2, {k, 1, n}]^n, {x, 0, n^2}], {n, 23}]]

A302862 a(n) = [x^n] (1 + theta_3(x))^n/(2^n*(1 - x)), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 4, 8, 20, 57, 160, 422, 1076, 2780, 7449, 20462, 56348, 153909, 418268, 1139703, 3126068, 8618611, 23801146, 65708424, 181391905, 501296216, 1387834518, 3848187985, 10680579812, 29660831057, 82415406493, 229156296047, 637659848888, 1775648562970, 4947475298595
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 14 2018

Keywords

Comments

a(n) = number of nonnegative solutions to (x_1)^2 + (x_2)^2 + ... + (x_n)^2 <= n.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(1 + EllipticTheta[3, 0, x])^n/(2^n (1 - x)), {x, 0, n}], {n, 0, 30}]
    Table[SeriesCoefficient[1/(1 - x) Sum[x^k^2, {k, 0, n}]^n, {x, 0, n}], {n, 0, 30}]

A303169 a(n) = [x^(n^3)] (1/(1 - x))*(Sum_{k>=0} x^(k^3))^n.

Original entry on oeis.org

1, 2, 6, 30, 241, 2093, 23059, 276056, 3657901, 51751598, 792918670, 13031054778, 228632547574, 4247832219975, 83138970732860, 1710953260292025, 36844216654753387, 827664913984323748, 19363023028132371129, 470436686367280495474, 11843579175327033093769
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2018

Keywords

Comments

Number of nonnegative solutions to (x_1)^3 + (x_2)^3 + ... + (x_n)^3 <= n^3.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[1/(1 - x) Sum[x^k^3, {k, 0, n}]^n, {x, 0, n^3}], {n, 0, 20}]
Showing 1-4 of 4 results.