cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A302997 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = [x^(n^2)] theta_3(x)^k/(1 - x), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 13, 7, 1, 1, 9, 33, 29, 9, 1, 1, 11, 89, 123, 49, 11, 1, 1, 13, 221, 425, 257, 81, 13, 1, 1, 15, 485, 1343, 1281, 515, 113, 15, 1, 1, 17, 953, 4197, 5913, 3121, 925, 149, 17, 1, 1, 19, 1713, 12435, 23793, 16875, 6577, 1419, 197, 19, 1, 1, 21, 2869, 33809, 88273, 84769, 42205, 11833, 2109, 253, 21, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2018

Keywords

Comments

A(n,k) is the number of integer lattice points inside the k-dimensional hypersphere of radius n.

Examples

			Square array begins:
  1,   1,   1,    1,     1,      1,  ...
  1,   3,   5,    7,     9,     11,  ...
  1,   5,  13,   33,    89,    221,  ...
  1,   7,  29,  123,   425,   1343,  ...
  1,   9,  49,  257,  1281,   5913,  ...
  1,  11,  81,  515,  3121,  16875,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[EllipticTheta[3, 0, x]^k/(1 - x), {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[1/(1 - x) Sum[x^i^2, {i, -n, n}]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
  • PARI
    T(n,k)={if(k==0, 1, polcoef(((1 + 2*sum(j=1, n, x^(j^2)) + O(x*x^(n^2)))^k)/(1-x), n^2))} \\ Andrew Howroyd, Sep 14 2019

Formula

A(n,k) = [x^(n^2)] (1/(1 - x))*(Sum_{j=-infinity..infinity} x^(j^2))^k.

A000603 Number of nonnegative solutions to x^2 + y^2 <= n^2.

Original entry on oeis.org

1, 3, 6, 11, 17, 26, 35, 45, 58, 73, 90, 106, 123, 146, 168, 193, 216, 243, 271, 302, 335, 365, 402, 437, 473, 516, 557, 600, 642, 687, 736, 782, 835, 886, 941, 999, 1050, 1111, 1167, 1234, 1297, 1357, 1424, 1491, 1564, 1636, 1703, 1778, 1852, 1931, 2012, 2095
Offset: 0

Views

Author

Keywords

Comments

Row sums of triangle A255238. - Wolfdieter Lang, Mar 15 2015

References

  • H. Gupta, A Table of Values of N_3(t), Proc. National Institute of Sciences of India, 13 (1947), 35-63.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=2 of A302998.

Programs

  • Haskell
    a000603 n = length [(x,y) | x <- [0..n], y <- [0..n], x^2 + y^2 <= n^2]
    -- Reinhard Zumkeller, Jan 23 2012
    
  • Mathematica
    Table[cnt = 0; Do[If[x^2 + y^2 <= n^2, cnt++], {x, 0, n}, {y, 0, n}]; cnt, {n, 0, 51}] (* T. D. Noe, Apr 02 2013 *)
    Table[If[n==1,1,2*Sum[Sum[A255195[[n, n - k + 1]], {k, 1, k}], {k, 1, n}] - Ceiling[(n - 1)/Sqrt[2]]],{n,1,52}] (* Mats Granvik, Feb 19 2015 *)
  • PARI
    a(n)=my(n2=n^2);sum(a=0,n,sqrtint(n2-a^2)+1) \\ Charles R Greathouse IV, Apr 03 2013
    
  • Python
    from math import isqrt
    def A000603(n): return (m:=n<<1)+sum(isqrt(k*(m-k)) for k in range(1,n))+1 # Chai Wah Wu, Jul 18 2024

Formula

a(n) = n^2 * Pi/4 + O(n). - Charles R Greathouse IV, Apr 03 2013
a(n) = A001182(n) + 2*n + 1. - R. J. Mathar, Jan 07 2015
a(n) = 2*A026702(n) - (1 + floor(n/sqrt(2))), n >= 0. - Wolfdieter Lang, Mar 15 2015
a(n) = [x^(n^2)] (1 + theta_3(x))^2/(4*(1 - x)), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 15 2018

Extensions

More terms from David W. Wilson, May 22 2000

A000604 Number of nonnegative solutions to x^2 + y^2 + z^2 <= n^2.

Original entry on oeis.org

1, 4, 11, 29, 54, 99, 163, 239, 344, 486, 648, 847, 1069, 1355, 1680, 2046, 2446, 2911, 3443, 4022, 4662, 5395, 6145, 6998, 7913, 8913, 10006, 11194, 12437, 13751, 15216, 16710, 18361, 20123, 21950, 23919, 25956, 28150, 30415, 32876, 35385, 38049, 40876
Offset: 0

Views

Author

Keywords

References

  • H. Gupta, A Table of Values of N_3(t), Proc. National Institute of Sciences of India, 13 (1947), 35-63.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=3 of A302998.
Cf. A000606.

Programs

  • Mathematica
    a[n_] := Sum[Boole[x^2 + y^2 + z^2 <= n^2], {x, 0, n}, {y, 0, Sqrt[n^2 - x^2]}, {z, 0, Sqrt[n^2 - x^2 - y^2]}]; A000604 = Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 100}] (* Jean-François Alcover, Feb 10 2016 *)

Formula

a(n) = [x^(n^2)] (1 + theta_3(x))^3/(8*(1 - x)), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 15 2018

Extensions

More terms from David W. Wilson, May 22 2000

A055406 Number of points in N^7 of norm <= n.

Original entry on oeis.org

1, 8, 106, 702, 3390, 11496, 33792, 83877, 191433, 394251, 766518, 1397065, 2446316, 4076126, 6601783, 10324698, 15776495, 23436651, 34198045, 48828417, 68680634, 94868383, 129404333, 173984393, 231540046, 304058667, 395837165
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=7 of A302998.

Programs

  • Mathematica
    a[n_]:=SeriesCoefficient[(1 + EllipticTheta[3, 0, x])^7/(128 (1 - x)), {x, 0, n^2}]; Array[a,27,0] (* Stefano Spezia, Mar 31 2025 *)

Formula

a(n) = [x^(n^2)] (1 + theta_3(x))^7/(128*(1 - x)), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 15 2018

A055407 Number of points in N^8 of norm <= n.

Original entry on oeis.org

1, 9, 171, 1420, 8262, 33044, 111155, 312913, 793049, 1807754, 3834490, 7601982, 14333819, 25683401, 44367189, 73913316, 119544010, 187884853, 288597817, 433331391, 638511294, 923461382, 1314459790, 1842974369, 2550288371
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=8 of A302998.

Formula

a(n) = [x^(n^2)] (1 + theta_3(x))^8/(256*(1 - x)), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 15 2018

A055408 Number of points in N^9 of norm <= n.

Original entry on oeis.org

1, 10, 265, 2780, 19250, 91067, 349122, 1115334, 3134307, 7903501, 18286018, 39418159, 79946582, 154050794, 283766861, 503208408, 861586362, 1432132554, 2314882321, 3655071196, 5640732550, 8538547541, 12683700617, 18541085573
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=9 of A302998.

Formula

a(n) = [x^(n^2)] (1 + theta_3(x))^9/(512*(1 - x)), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 15 2018

A055409 Number of points in N^10 of norm <= n.

Original entry on oeis.org

1, 11, 396, 5258, 43154, 241283, 1053323, 3813001, 11887373, 33107532, 83570177, 195642892, 427116918, 883782766, 1736506732, 3275680338, 5938894018, 10431199387, 17749369808, 29449543675, 47615028191, 75399727379
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=10 of A302998.

Formula

a(n) = [x^(n^2)] (1 + theta_3(x))^10/(1024*(1 - x)), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 15 2018

A055403 Number of points in N^4 of norm <= n.

Original entry on oeis.org

1, 5, 20, 70, 165, 357, 688, 1154, 1867, 2907, 4272, 6070, 8357, 11307, 14998, 19470, 24809, 31211, 38928, 47816, 58201, 70361, 83962, 99648, 117519, 137521, 160270, 185528, 213615, 244649, 279370, 317006, 358809, 404823, 454838, 509486, 568493
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=4 of A302998.

Formula

a(n) = [x^(n^2)] (1 + theta_3(x))^4/(16*(1 - x)), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 15 2018

A055404 Number of points in N^5 of norm <= n.

Original entry on oeis.org

1, 6, 36, 157, 482, 1203, 2673, 5139, 9389, 15930, 25810, 39855, 59711, 86346, 122467, 168957, 229743, 305153, 400844, 518154, 662629, 835490, 1044410, 1292216, 1588236, 1930057, 2334622, 2798143, 3340038, 3955063, 4663169
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=5 of A302998.

Formula

a(n) = [x^(n^2)] (1 + theta_3(x))^5/(32*(1 - x)), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 15 2018

A055405 Number of points in N^6 of norm <= n.

Original entry on oeis.org

1, 7, 63, 337, 1319, 3819, 9763, 21374, 43774, 81586, 145138, 243345, 394696, 612274, 928616, 1363401, 1967428, 2762729, 3825273, 5197436, 6974412, 9198648, 12019669, 15500750, 19827441, 25050955, 31438147, 39053729, 48254762
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=6 of A302998.

Formula

a(n) = [x^(n^2)] (1 + theta_3(x))^6/(64*(1 - x)), where theta_3() is the Jacobi theta function. - Ilya Gutkovskiy, Apr 15 2018
Showing 1-10 of 21 results. Next