cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A302998 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = [x^(n^2)] (1 + theta_3(x))^k/(2^k*(1 - x)), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 11, 11, 5, 1, 1, 6, 20, 29, 17, 6, 1, 1, 7, 36, 70, 54, 26, 7, 1, 1, 8, 63, 157, 165, 99, 35, 8, 1, 1, 9, 106, 337, 482, 357, 163, 45, 9, 1, 1, 10, 171, 702, 1319, 1203, 688, 239, 58, 10, 1, 1, 11, 265, 1420, 3390, 3819, 2673, 1154, 344, 73, 11, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2018

Keywords

Comments

A(n,k) is the number of nonnegative solutions to (x_1)^2 + (x_2)^2 + ... + (x_k)^2 <= n^2.

Examples

			Square array begins:
  1,  1,   1,   1,    1,     1,  ...
  1,  2,   3,   4,    5,     6,  ...
  1,  3,   6,  11,   20,    36,  ...
  1,  4,  11,  29,   70,   157,  ...
  1,  5,  17,  54,  165,   482,  ...
  1,  6,  26,  99,  357,  1203,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[(1 + EllipticTheta[3, 0, x])^k/(2^k (1 - x)), {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[1/(1 - x) Sum[x^i^2, {i, 0, n}]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
  • PARI
    T(n,k)={if(k==0, 1, polcoef(((sum(j=0, n, x^(j^2)) + O(x*x^(n^2)))^k)/(1-x), n^2))} \\ Andrew Howroyd, Sep 14 2019

Formula

A(n,k) = [x^(n^2)] (1/(1 - x))*(Sum_{j>=0} x^(j^2))^k.

A341424 Number of positive solutions to (x_1)^2 + (x_2)^2 + ... + (x_5)^2 <= n^2.

Original entry on oeis.org

6, 51, 177, 547, 1348, 2958, 5574, 10084, 16974, 27450, 41970, 62671, 90216, 128082, 175867, 238018, 316373, 414998, 534094, 682144, 859705, 1075165, 1326551, 1627896, 1976582, 2390057, 2862607, 3411273, 4039483, 4760419, 5571729, 6500650, 7541560, 8722096
Offset: 3

Views

Author

Ilya Gutkovskiy, Feb 11 2021

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k=0, 1, `if`(n=0, 0,
          add((s->`if`(s>n, 0, b(n-s, k-1)))(j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(n^2, 5):
    seq(a(n), n=3..36);  # Alois P. Heinz, Feb 11 2021
  • Mathematica
    Table[SeriesCoefficient[(EllipticTheta[3, 0, x] - 1)^5/(32 (1 - x)), {x, 0, n^2}], {n, 3, 36}]

Formula

a(n) is the coefficient of x^(n^2) in expansion of (theta_3(x) - 1)^5 / (32 * (1 - x)).

A341400 Number of nonnegative solutions to (x_1)^2 + (x_2)^2 + ... + (x_5)^2 <= n.

Original entry on oeis.org

1, 6, 16, 26, 36, 57, 87, 107, 122, 157, 207, 247, 277, 322, 392, 452, 482, 537, 637, 717, 773, 863, 973, 1053, 1113, 1203, 1343, 1473, 1553, 1668, 1858, 1998, 2053, 2173, 2373, 2543, 2673, 2818, 3018, 3218, 3338, 3483, 3753, 3973, 4113, 4344, 4634, 4834, 4944, 5139, 5449
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 10 2021

Keywords

Comments

Partial sums of A038671.

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n=0, 1, `if`(n<0 or k<1, 0,
          b(n, k-1)+add(b(n-j^2, k-1), j=1..isqrt(n))))
        end:
    a:= proc(n) option remember; b(n, 5)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 10 2021
  • Mathematica
    nmax = 50; CoefficientList[Series[(1 + EllipticTheta[3, 0, x])^5/(32 (1 - x)), {x, 0, nmax}], x]

Formula

G.f.: (1 + theta_3(x))^5 / (32 * (1 - x)).
a(n^2) = A055404(n).

A302863 a(n) = [x^(n^2)] (1 + theta_3(x))^n/(2^n*(1 - x)), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 2, 6, 29, 165, 1203, 9763, 83877, 793049, 7903501, 83570177, 933697153, 10905583809, 133352809334, 1695473999478, 22354920990148, 305096197935075, 4296142551821184, 62336908825014452, 930284705538262688, 14255992611680074754, 224065160215526683317, 3607018540134004189466
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 14 2018

Keywords

Comments

a(n) = number of nonnegative solutions to (x_1)^2 + (x_2)^2 + ... + (x_n)^2 <= n^2.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[(1 + EllipticTheta[3, 0, x])^n/(2^n (1 - x)), {x, 0, n^2}], {n, 0, 22}]
    Table[SeriesCoefficient[1/(1 - x) Sum[x^k^2, {k, 0, n}]^n, {x, 0, n^2}], {n, 0, 22}]
Showing 1-4 of 4 results.