cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A302189 Hurwitz inverse of squares [1,4,9,16,...].

Original entry on oeis.org

1, -4, 23, -184, 1933, -25316, 397699, -7288408, 152650649, -3596802148, 94165506031, -2711813462744, 85195437862693, -2899579176456964, 106276755720182363, -4173542380352243896, 174823612884063939889, -7780800729631450594628
Offset: 0

Views

Author

N. J. A. Sloane and William F. Keigher, Apr 12 2018

Keywords

Comments

In the ring of Hurwitz sequences all members have offset 0.

References

  • Xing Gao and William F. Keigher, Interlacing of Hurwitz series, Communications in Algebra, 45:5 (2017), 2163-2185, DOI: 10.1080/00927872.2016.1226885

Crossrefs

Cf. A302870.

Programs

  • Maple
    # first load Maple commands for Hurwitz operations from link
    s:=[seq(n^2,n=1..64)];
    Hinv(s);
  • Mathematica
    nmax = 20; CoefficientList[Series[1/(E^x*(1 + 3*x + x^2)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2018 *)

Formula

E.g.f. = 1 / Sum_{n >= 0} (n+1)^2*x^n/n!.
From Vaclav Kotesovec, Apr 15 2018: (Start)
E.g.f: exp(-x)/(1 + 3*x + x^2).
a(n) ~ (-1)^n * n! * exp(1/phi^2) * phi^(2*n + 2) / sqrt(5), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio.
(End)

A308862 Expansion of e.g.f. 1/(1 - x*(1 + 3*x + x^2)*exp(x)).

Original entry on oeis.org

1, 1, 10, 81, 976, 14505, 258456, 5377897, 127852096, 3419620209, 101625743080, 3322169384721, 118475520287136, 4577175039397753, 190436902905933880, 8489222610046324665, 403657900923994965376, 20393319895130130117729, 1090902632352025316904648
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 29 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 18; CoefficientList[Series[1/(1 - x (1 + 3 x + x^2) Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
    a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k^3 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 18}]
  • PARI
    my(x='x+O('x^25)); Vec(serlaplace(1/(1 - x*(1 + 3*x + x^2)*exp(x)))) \\ Michel Marcus, Mar 10 2022

Formula

E.g.f.: 1 / (1 - Sum_{k>=1} k^3*x^k/k!).
a(0) = 1; a(n) = Sum_{k=1..n} binomial(n,k) * k^3 * a(n-k).
a(n) ~ n! / (r^(n+1) * exp(r) * (1 + 7*r + 6*r^2 + r^3)), where r = 0.33649177041401456061485914122406146158245451810028937972189... is the root of the equation exp(r)*r*(1 + 3*r + r^2) = 1. - Vaclav Kotesovec, Jun 29 2019

A335578 a(0) = 1; a(n) = -Sum_{k=1..n} binomial(n,k) * k^3 * a(n-k).

Original entry on oeis.org

1, -1, -6, 15, 272, -745, -29976, 61271, 6065856, -2723697, -1941455080, -3989345041, 897021218400, 4964061925511, -562221881675832, -5689641396555705, 456732442022509184, 7321841133968133023, -464200472167634521800, -10961686347887871324289, 573373115861405030522400
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 26 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n, k] k^3 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
    nmax = 20; CoefficientList[Series[1/(1 + Exp[x] x (1 + 3 x + x^2)), {x, 0, nmax}], x] Range[0, nmax]!

Formula

E.g.f.: 1 / (1 + exp(x) * x * (1 + 3*x + x^2)).
E.g.f.: 1 / (1 + Sum_{k>=1} k^3 * x^k / k!).
Showing 1-3 of 3 results.