A308861
Expansion of e.g.f. 1/(1 - x*(1 + x)*exp(x)).
Original entry on oeis.org
1, 1, 6, 39, 352, 3965, 53556, 844123, 15204960, 308118105, 6937562980, 171826160231, 4642588564032, 135891789038629, 4283619809941668, 144674451274329075, 5211965027738046016, 199498704931954788785, 8085413817213212761668, 345895984008645703002559
Offset: 0
-
nmax = 19; CoefficientList[Series[1/(1 - x (1 + x) Exp[x]), {x, 0, nmax}], x] Range[0, nmax]!
a[0] = 1; a[n_] := a[n] = Sum[Binomial[n, k] k^2 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 19}]
-
my(x='x+O('x^25)); Vec(serlaplace(1/(1 - x*(1 + x)*exp(x)))) \\ Michel Marcus, Mar 10 2022
A302191
Numerators of Hurwitz inverse of primes [2,3,5,7,...].
Original entry on oeis.org
1, -3, 1, -5, -7, 97, -403, 3795, 1683, -67403, 141662, -5744835, -710829, 124489961, -7187558877, 247099181979, -43618981401, -2710990422171, 16455095049450, -1725616801459565, 2828334020055989, 58332444583336295, -2708485501761494555
Offset: 0
1/2, -3/4, 1, -5/8, -7/2, 97/4, -403/4, 3795/16, 1683/2, -67403/4, 141662, -5744835/8, -710829/2, 124489961/2, -7187558877/8, ...
- Xing Gao and William F. Keigher, Interlacing of Hurwitz series, Communications in Algebra, 45:5 (2017), 2163-2185, DOI: 10.1080/00927872.2016.1226885
A302194
Hurwitz inverse of [1 followed by primes], [1,2,3,5,7,...].
Original entry on oeis.org
1, -2, 5, -17, 79, -471, 3391, -28451, 272447, -2933807, 35102403, -462021525, 6634207777, -103200019093, 1728836723813, -31030630439249, 594094812208133, -12085090282079299, 260296103744105623, -5917885334682695549, 141625618336446419151
Offset: 0
- Xing Gao and William F. Keigher, Interlacing of Hurwitz series, Communications in Algebra, 45:5 (2017), 2163-2185, DOI: 10.1080/00927872.2016.1226885
A302870
Expansion of e.g.f. 1 / Sum_{n >= 0} (n+1)^3*x^n/n!.
Original entry on oeis.org
1, -8, 101, -1840, 44441, -1340696, 48530653, -2049479216, 98915010545, -5370730092136, 324012625790741, -21502216185516848, 1556657523678767881, -122085765970981019000, 10311495889448094131981, -933128678308256836233136, 90072066063382006331898593
Offset: 0
-
nmax = 20; CoefficientList[Series[1/(E^x*((1 + 7*x + 6*x^2 + x^3))), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 15 2018 *)
A302197
Hurwitz logarithm of Catalan numbers [1,1,2,5,14,...].
Original entry on oeis.org
0, 1, 1, 1, 0, -4, -10, 15, 210, 504, -3528, -34440, -36960, 1512720, 11763180, -24549525, -1118467350, -6466860400, 62185563440, 1297024576848, 3903558763104, -149417396724960, -2150022118411440, 3233834859735480, 449839942314082320
Offset: 0
-
# first load Maple commands for Hurwitz operations from link in A302189.
s:=[seq(binomial(2*n,n)/(n+1),n=0..30)];
Hlog(s);
-
nmax = 30; CoefficientList[Series[2*x + Log[BesselI[0, 2*x] - BesselI[1, 2*x]], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 26 2023 *)
-
A = PowerSeriesRing(QQ, 'x')
f = A([catalan_number(i) for i in range(30)]).ogf_to_egf().log()
print(list(f.egf_to_ogf()))
# F. Chapoton, Apr 11 2020
A302195
Hurwitz inverse of triangular numbers [1,3,6,10,15,...].
Original entry on oeis.org
1, -3, 12, -64, 441, -3771, 38638, -461742, 6306009, -96885451, 1653938616, -31057949748, 636230845297, -14119481897379, 337448486204586, -8640908986912786, 236015269236658833, -6849355531826261427, 210466462952536609924
Offset: 0
- Xing Gao and William F. Keigher, Interlacing of Hurwitz series, Communications in Algebra, 45:5 (2017), 2163-2185, DOI: 10.1080/00927872.2016.1226885
-
# first load Maple commands for Hurwitz operations from link in A302189.
s:=[seq(n*(n+1)/2,n=1..64)];
Hinv(s);
-
nmax = 20; CoefficientList[Series[1/(E^x*(1 + 2*x + x^2/2)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Apr 26 2018 *)
A302199
Hurwitz inverse of partition numbers A000041.
Original entry on oeis.org
1, -1, 0, 3, -5, -17, 103, 55, -2680, 6720, 82446, -642698, -2087303, 53641331, -96015983, -4454066000, 35131380473, 323923309109, -6776856484915, -3620043398324, 1159030195119059, -7865002945782432, -175052008152354596, 3163635176513031787
Offset: 0
- Xing Gao and William F. Keigher, Interlacing of Hurwitz series, Communications in Algebra, 45:5 (2017), 2163-2185, DOI: 10.1080/00927872.2016.1226885
A302190
Hurwitz logarithm of natural numbers 1,2,3,4,5,...
Original entry on oeis.org
0, 2, -1, 2, -6, 24, -120, 720, -5040, 40320, -362880, 3628800, -39916800, 479001600, -6227020800, 87178291200, -1307674368000, 20922789888000, -355687428096000, 6402373705728000, -121645100408832000, 2432902008176640000, -51090942171709440000
Offset: 0
-
# first load Maple commands for Hurwitz operations from link
s:=[seq(n,n=1..64)];
Hlog(s);
-
A = PowerSeriesRing(QQ, 'x')
f = A(list(range(1,30))).ogf_to_egf().log()
print(list(f.egf_to_ogf()))
# F. Chapoton, Apr 11 2020
A335577
a(0) = 1; a(n) = -Sum_{k=1..n} binomial(n,k) * k^2 * a(n-k).
Original entry on oeis.org
1, -1, -2, 9, 32, -285, -1236, 18725, 86176, -2087001, -9204580, 351964569, 1336442304, -83422970917, -231889447076, 26389118293005, 35917342192064, -10722110983670193, 5028963509133756, 5432569724760331841, -14852185163192897120, -3352369390318855889661
Offset: 0
-
a[0] = 1; a[n_] := a[n] = -Sum[Binomial[n, k] k^2 a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 21}]
nmax = 21; CoefficientList[Series[1/(1 + Exp[x] x (1 + x)), {x, 0, nmax}], x] Range[0, nmax]!
A302196
Hurwitz logarithm of triangular numbers [1,3,6,10,15,...].
Original entry on oeis.org
0, 3, -3, 10, -51, 348, -2970, 30420, -363510, 4964400, -76272840, 1302058800, -24450287400, 500871016800, -11115524019600, 265655410020000, -6802532278542000, 185802383710944000, -5392136656290384000, 165689154918679392000, -5374132518684161232000, 183484361312817364800000
Offset: 0
- Xing Gao and William F. Keigher, Interlacing of Hurwitz series, Communications in Algebra, 45:5 (2017), 2163-2185, DOI: 10.1080/00927872.2016.1226885.
-
# first load Maple commands for Hurwitz operations from link in A302189.
s:=[seq(n*(n+1)/2,n=1..64)];
Hlog(s);
-
A = PowerSeriesRing(QQ, 'x')
f = A([binomial(i+2,2) for i in range(30)]).ogf_to_egf().log()
print(list(f.egf_to_ogf()))
#F. Chapoton, Apr 11 2020
Showing 1-10 of 11 results.
Comments