A302991
Decimal expansion of the asymptotic density of abundant numbers.
Original entry on oeis.org
2, 4, 7, 6, 1, 9, 6
Offset: 0
- Felix Behrend, Über numeri abundantes I, S.-Ber. Preuß. Akad. Wiss., math.-nat. Kl. (1932), pp. 322-328.
- Erich Bessel-Hagen, Repertorium der höheren Mathematik, 2nd edn., Vol. 1, B. G. Teubner (Leipzig, 1929), pp. 1458-1574.
- Harold Davenport, Über numeri abundantes, Sitzungsberichte der Preußischen Akademie der Wissenschaften, phys.-math. Klasse, No. 6 (1933), pp. 830-837.
- Felix Behrend, Über numeri abundantes, inaugural dissertation, Sitzungsberichte der Preußischen Akademie der Wissenschaften, phys.-math. Klasse, pp. 280-293, 1933.
- Marc Deléglise, Bounds for the Density of Abundant Integers, Experimental Mathematics, Vol. 7, No. 2 (1998), pp. 137-143.
- Mitsuo Kobayashi, On the Density of Abundant Numbers, Ph.D. thesis, Dartmouth College, 2010.
- Nathan McNew and Jai Setty, On the densities of covering numbers and abundant numbers, arXiv:2507.23041 [math.NT], 2025.
- Hans Salié, Über die Dichte abundanter Zahlen, Mathematische Nachrichten, Vol. 14, No. 1 (1955), pp. 39-46.
- Charles R. Wall, Phillip L. Crews and Donald B. Johnson, Density Bounds for the Sum of Divisors Function, Mathematics of Computation, Vol. 26, No. 119 (1972), pp. 773-777; Errata, Vol. 31, No. 138 (1977), p. 616.
A302993
Number of unitary abundant numbers < 10^n.
Original entry on oeis.org
0, 5, 64, 691, 7011, 70030, 699597, 7005450, 70048740, 700321813, 7003128054, 70034216605, 700350142296, 7003426996800, 70033987968599, 700341098675985, 7003416399263312
Offset: 1
-
usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; uabQ[n_] := usigma[n] > 2 n; c = 0; k = 1; seq={}; Do[While[k < 10^n, If[uabQ[k], c++]; k++]; AppendTo[seq, c], {n, 1, 5}]; seq
A302994
Number of bi-unitary abundant numbers < 10^n.
Original entry on oeis.org
0, 14, 147, 1553, 15450, 155395, 1549818, 15498814, 155079196, 1550331185, 15503061466, 155037242668, 1550370696100, 15503650949671, 155036854371220, 1550366484701654, 15503648102080675
Offset: 1
-
f[n_] := Select[Divisors[n], Function[d, CoprimeQ[d, n/d]]]; bsigma[m_] :=
DivisorSum[m, # &, Last@Intersection[f@#, f[m/#]] == 1 &]; babQ[n_] := bsigma[n] > 2 n; c = 0; k = 1; seq={}; Do[While[k < 10^n, If[babQ[k], c++]; k++]; AppendTo[seq, c], {n, 1, 5}]; seq
-
biusigma(n) = {f = factor(n); for (i=1, #f~, p = f[i, 1]; e = f[i, 2]; f[i, 1] = if (e % 2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1) -p^(e/2)); f[i, 2] = 1; ); factorback(f); }
a(n) = sum(k=1, 10^n-1, biusigma(k) > 2*k); \\ Michel Marcus, Apr 17 2018
A307821
The number of exponential abundant numbers below 10^n.
Original entry on oeis.org
0, 0, 1, 12, 102, 1045, 10449, 104365, 1043641, 10436775, 104367354
Offset: 1
Below 10^3 there is only one exponential abundant number, A129575(1) = 900, thus a(3) = 1.
-
fun[p_, e_] := DivisorSum[e, p^# &]; esigma[1] = 1; esigma[n_] := Times @@ fun @@@ FactorInteger[n]; c = 0; k = 1; seq={}; Do[ While[ k < 10^n, If[ esigma[k]>2k, c++ ]; k ++]; AppendTo[seq, c], {n, 1, 5}]; seq
A307823
The number of nonunitary abundant numbers below 10^n.
Original entry on oeis.org
0, 5, 75, 812, 8079, 81052, 808477, 8097357, 80939927, 809350234
Offset: 1
Below 10^2 there are 5 nonunitary abundant numbers, 36, 48, 72, 80, and 96, thus a(2) = 5.
-
usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); nusigma[n_] := DivisorSigma[1, n] - usigma[n]; c = 0; k = 1; seq={}; Do[ While[ k < 10^n, If[ nusigma[k]>k, c++ ]; k ++]; AppendTo[seq, c], {n, 1, 5}]; seq
A307820
The number of infinitary abundant numbers below 10^n.
Original entry on oeis.org
0, 12, 114, 1270, 12518, 125634, 1257749, 12570993, 125716733, 1256921422, 12570417639
Offset: 1
Below 10^2 there are 12 infinitary abundant numbers, 24, 30, 40, 42, 54, 56, 66, 70, 72, 78, 88, and 96, thus a(2) = 12.
-
fun[p_, e_] := Module[{ b = IntegerDigits[e, 2]}, m=Length[b]; Product[If[b[[j]] > 0, 1+p^(2^(m-j)), 1], {j, 1, m}]]; isigma[1]=1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; c = 0; k = 1; seq={}; Do[ While[ k < 10^n, If[ isigma[k]>2k, c++ ]; k ++]; AppendTo[seq, c], {n, 1, 5}]; seq
A322287
The number of odd abundant numbers below 10^n.
Original entry on oeis.org
0, 0, 1, 23, 210, 1996, 20661, 205366, 2048662, 20502004, 204951472
Offset: 1
945 is the only odd abundant number below 10^3, thus a(3) = 1.
- C. W. Anderson, Density of Deficient Odd Numbers, The American Mathematical Monthly, Vol. 82, No. 10 (1975), pp. 1018-1020.
- Mitsuo Kobayashi, Paul Pollack and Carl Pomerance, On the distribution of sociable numbers, Journal of Number Theory, Vol. 129, No. 8 (2009), pp. 1990-2009. See Theorem 10 on p. 2007.
-
abQ[n_] := DivisorSigma[1, n] > 2 n; c = 0; k = 1; s = {}; Do[While[k < 10^n, If[abQ[k], c++]; k += 2]; AppendTo[s, c], {n, 1, 5}]; s
A303736
Number of deficient numbers < 10^n.
Original entry on oeis.org
8, 76, 751, 7508, 75201, 752451, 7523259, 75239327, 752389040, 7523761073, 75238050781, 752382051546, 7523801085404, 75237991990847, 752380354682456, 7523805396029055, 75238037557271886
Offset: 1
-
P:=Filtered([1..10^7],n->Sigma(n)<2*n);;
o:=List([1..7],j->[]);; for i in [1..Length(P)] do for n in [1..Length(o)] do if P[i]<10^n then Add(o[n],P[i]); fi; od; od;
a:=List(o,Length);
-
Accumulate@ Array[Count[Range[10^#, 10^(# + 1) - 1], ?(DivisorSigma[1, #] < 2 # &)] &, 6, 0] (* _Michael De Vlieger, May 20 2018 *)
-
a(n) = sum(k=1, 10^n-1, sigma(k) < 2*k); \\ Michel Marcus, May 19 2018
A363170
The number of powerful abundant numbers (A363169) not exceeding 10^n.
Original entry on oeis.org
0, 3, 23, 82, 297, 1000, 3268, 10534, 33799, 107901, 343155, 1090189, 3460380, 10970774, 34749182, 109991778, 348006756, 1101058505, 3483105232, 11017518803
Offset: 1
a(2) = 3 since there are 3 powerful abundant numbers not exceeding 10^2: 36, 72 and 100.
-
seq[nmax_] := Module[{c = 0, p = 10, k = 1, kmax = 10^nmax, s = {}}, While[k <= kmax, If[DivisorSigma[-1, k] > 2 && Min[FactorInteger[k][[;;, 2]]] > 1, c++]; If[k == p, AppendTo[s, c]; p *= 10]; k++]; s]; seq[5]
-
is(n) = { my(f = factor(n)); n > 1 && vecmin(f[, 2]) > 1 && sigma(f, -1) > 2; } \\ A363169
lista(nmax) = {my(c = 0, p = 10, k = 1, kmax = 10^nmax); while(k <= kmax, if(is(k), c++); if(k == p, print1(c, ", "); p *= 10); k++); }
A306951
Number of weird numbers (A006037) below 10^n.
Original entry on oeis.org
0, 1, 2, 7, 204, 1765, 15554, 173709, 1756426, 17270452, 172559761
Offset: 1
The only weird number below 100 is 70 which is larger than 10, thus a(1) = 0 and a(2) = 1.
Showing 1-10 of 12 results.
Comments