cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A302996 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = [x^(n^2)] theta_3(x)^k, where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 1, 0, 1, 2, 0, 1, 4, 2, 0, 1, 6, 4, 2, 0, 1, 8, 6, 4, 2, 0, 1, 10, 24, 30, 4, 2, 0, 1, 12, 90, 104, 6, 12, 2, 0, 1, 14, 252, 250, 24, 30, 4, 2, 0, 1, 16, 574, 876, 730, 248, 30, 4, 2, 0, 1, 18, 1136, 3542, 4092, 1210, 312, 54, 4, 2, 0, 1, 20, 2034, 12112, 18494, 7812, 2250, 456, 6, 4, 2, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 17 2018

Keywords

Comments

A(n,k) is the number of ordered ways of writing n^2 as a sum of k squares.

Examples

			Square array begins:
  1,  1,   1,   1,    1,     1,  ...
  0,  2,   4,   6,    8,    10,  ...
  0,  2,   4,   6,   24,    90,  ...
  0,  2,   4,  30,  104,   250,  ...
  0,  2,   4,   6,   24,   730,  ...
  0,  2,  12,  30,  248,  1210,  ...
		

Crossrefs

Columns k=0..4,7 give A000007, A040000, A046109, A016725, A267326, A361695.
Main diagonal gives A232173.

Programs

  • Maple
    b:= proc(n, t) option remember; `if`(n=0, 1, `if`(n<0 or t<1, 0,
          b(n, t-1)+2*add(b(n-j^2, t-1), j=1..isqrt(n))))
        end:
    A:= (n, k)-> b(n^2, k):
    seq(seq(A(n,d-n), n=0..d), d=0..12);  # Alois P. Heinz, Mar 10 2023
  • Mathematica
    Table[Function[k, SeriesCoefficient[EllipticTheta[3, 0, x]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[Sum[x^i^2, {i, -n, n}]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

A(n,k) = [x^(n^2)] (Sum_{j=-infinity..infinity} x^(j^2))^k.