A302996 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals: A(n,k) = [x^(n^2)] theta_3(x)^k, where theta_3() is the Jacobi theta function.
1, 1, 0, 1, 2, 0, 1, 4, 2, 0, 1, 6, 4, 2, 0, 1, 8, 6, 4, 2, 0, 1, 10, 24, 30, 4, 2, 0, 1, 12, 90, 104, 6, 12, 2, 0, 1, 14, 252, 250, 24, 30, 4, 2, 0, 1, 16, 574, 876, 730, 248, 30, 4, 2, 0, 1, 18, 1136, 3542, 4092, 1210, 312, 54, 4, 2, 0, 1, 20, 2034, 12112, 18494, 7812, 2250, 456, 6, 4, 2, 0
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, ... 0, 2, 4, 6, 8, 10, ... 0, 2, 4, 6, 24, 90, ... 0, 2, 4, 30, 104, 250, ... 0, 2, 4, 6, 24, 730, ... 0, 2, 12, 30, 248, 1210, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..200, flattened
- Eric Weisstein's World of Mathematics, Jacobi Theta Functions
- Index entries for sequences related to sums of squares
Crossrefs
Programs
-
Maple
b:= proc(n, t) option remember; `if`(n=0, 1, `if`(n<0 or t<1, 0, b(n, t-1)+2*add(b(n-j^2, t-1), j=1..isqrt(n)))) end: A:= (n, k)-> b(n^2, k): seq(seq(A(n,d-n), n=0..d), d=0..12); # Alois P. Heinz, Mar 10 2023
-
Mathematica
Table[Function[k, SeriesCoefficient[EllipticTheta[3, 0, x]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten Table[Function[k, SeriesCoefficient[Sum[x^i^2, {i, -n, n}]^k, {x, 0, n^2}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten
Formula
A(n,k) = [x^(n^2)] (Sum_{j=-infinity..infinity} x^(j^2))^k.
Comments