cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303053 Number of minimum total dominating sets in the n-prism graph.

Original entry on oeis.org

2, 4, 3, 36, 25, 9, 14, 64, 3, 625, 99, 9, 26, 196, 3, 3136, 221, 9, 38, 400, 3, 9801, 391, 9, 50, 676, 3, 23716, 609, 9, 62, 1024, 3, 48841, 875, 9, 74, 1444, 3, 90000, 1189, 9, 86, 1936, 3, 152881, 1551, 9, 98, 2500, 3, 244036, 1961, 9, 110, 3136, 3, 370881
Offset: 1

Views

Author

Eric W. Weisstein, Apr 17 2018

Keywords

Comments

Sequence extrapolated to n=1 using recurrence. - Andrew Howroyd, Apr 17 2018

Crossrefs

Programs

  • Mathematica
    Table[(432 + 132 n + 85 n^2 + 10 n^3 + n^4 + (216 - 132 n + 37 n^2 + 10 n^3 + n^4) (-1)^n +(432 + 132 n - 37 n^2 - 10 n^3 - n^4) Cos[n Pi/3] + (864 - 132 n - 85 n^2 - 10 n^3 - n^4) Cos[2 n Pi/3] +Sqrt[3] (12 n - 13 n^2 - 10 n^3 - n^4) Sin[n Pi/3] + Sqrt[3] (12 n - 35 n^2 + 10 n^3 + n^4) Sin[2 n Pi/3])/216, {n, 200}]
    Table[Piecewise[{{9, Mod[n, 6] == 0}, {2 n, Mod[n, 6] == 1}, {n^2, Mod[n, 6] == 2}, {3, Mod[n, 6] == 3}, {n^2 (n + 5)^2/36, Mod[n, 6] == 4}, {n (2 n + 5)/3, Mod[n, 6] == 5}}], {n, 200}]
    LinearRecurrence[{0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, -10, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, -5, 0, 0, 0, 0, 0, 1}, {2, 4, 3, 36, 25, 9, 14, 64, 3, 625, 99, 9, 26, 196, 3, 3136, 221, 9, 38, 400, 3, 9801, 391, 9, 50, 676, 3, 23716, 609, 9}, 200]
    Rest @ CoefficientList[Series[(9 x^6)/(1 - x^6) - (3 x^3)/(-1 + x^6) + (2 x (1 + 5 x^6))/(-1 + x^6)^2 + (x^5 (-25 - 24 x^6 + x^12))/(-1 + x^6)^3 - (4 x^2 (1 + 13 x^6 + 4 x^12))/(-1 + x^6)^3 - (x^4 (36 + 445 x^6 + 371 x^12 + 11 x^18 + x^24))/(-1 + x^6)^5, {x, 0, 200}], x]

Formula

From Andrew Howroyd, Apr 17 2018: (Start)
a(n) = 5*a(n-6) - 10*a(n-12) + 10*a(n-18) - 5*a(n-24) + a(n-30) for n > 30.
a(6*k) = 9, a(6*k+1) = 2*(6*k+1), a(6*k+2) = (6*k+2)^2, a(6*k+3) = 3, a(6*k+4) = ((2*k + 3)*(3*k + 2))^2, a(6*k+5) = (4*k + 5)*(6*k + 5). (End)

Extensions

a(1)-a(2) and terms a(15) and beyond from Andrew Howroyd, Apr 17 2018