cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A302405 Total domination number of the n-prism graph.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 4, 5, 6, 6, 8, 8, 8, 9, 10, 10, 12, 12, 12, 13, 14, 14, 16, 16, 16, 17, 18, 18, 20, 20, 20, 21, 22, 22, 24, 24, 24, 25, 26, 26, 28, 28, 28, 29, 30, 30, 32, 32, 32, 33, 34, 34, 36, 36, 36, 37, 38, 38, 40, 40, 40, 41, 42, 42, 44, 44, 44, 45, 46, 46, 48
Offset: 0

Views

Author

Eric W. Weisstein, Apr 07 2018

Keywords

Comments

Extended to a(0)-a(2) using the formula/recurrence.

Crossrefs

Programs

  • Magma
    I:=[1,2,2,4,4,4,5,6]; [0] cat [n le 7 select I[n] else Self(n-1) + Self(n-6) - Self(n-7): n in [1..30]]; // G. C. Greubel, Apr 09 2018
  • Mathematica
    Table[(3 + (-1)^n + 4 n - Cos[n Pi/3] - 3 Cos[2 n Pi/3] - Sqrt[3] Sin[n Pi/3] + Sin[2 n Pi/3]/Sqrt[3])/6, {n, 0, 50}]
    LinearRecurrence[{1,0,0,0,0,1,-1}, {1,2,2,4,4,4,5,6}, {0, 50}]
    CoefficientList[Series[x (1 + x + 2 x^3)/((-1 + x)^2 (1 + x + x^2 + x^3 + x^4 + x^5)), {x, 0, 50}], x]
  • PARI
    x='x+O('x^50); concat(0, Vec(x*(1+x+2*x^3)/((1-x)^2*(1+x+ x^2+x^3+ x^4+x^5)))) \\ G. C. Greubel, Apr 09 2018
    

Formula

a(n) = a(n-1) + a(n-6) - a(n-7).
G.f.: x*(1 + x + 2*x^3)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5)).
a(n) = a(n-6) + 4. - Andrew Howroyd, Apr 17 2018

A303006 Number of minimal total dominating sets in the n-prism graph.

Original entry on oeis.org

2, 4, 5, 36, 27, 25, 114, 196, 437, 729, 1674, 3249, 6450, 12996, 24870, 49284, 95882, 190969, 369666, 724201, 1425261, 2802276, 5495162, 10764961, 21186827, 41602500, 81686669, 160326244, 314946266, 618516900, 1214288106, 2384368900, 4681737021, 9193357924
Offset: 1

Views

Author

Eric W. Weisstein, Apr 17 2018

Keywords

Comments

Sequence extrapolated to n=1 using recurrence. - Andrew Howroyd, Apr 17 2018

Crossrefs

Programs

  • Mathematica
    Table[3 + 3 (-1)^n + RootSum[1 - 2 # - #^2 + 3 #^3 - #^4 - 2 #^5 + #^6 &, #^n &] + RootSum[1 - 4 # + 10 #^2 - 19 #^3 + 28 #^4 - 34 #^5 + 37 #^6 - 34 #^7 + 28 #^8 - 19 #^9 + 10 #^10 - 4 #^11 + #^12 &, #^n &] + RootSum[1 + 4 # + 10 #^2 + 19 #^3 + 28 #^4 + 34 #^5 + 37 #^6 + 34 #^7 + 28 #^8 + 19 #^9 + 10 #^10 + 4 #^11 + #^12 &, #^n &], {n, 200}]
    LinearRecurrence[{2, -2, 3, 4, -7, 5, 0, -21, 39, -24, 21, 33, -36,
      63, -33, 0, 33, -63, 36, -33, -21, 24, -39, 21, 0, -5, 7, -4, -3,
      2, -2, 1}, {2, 4, 5, 36, 27, 25, 114, 196, 437, 729, 1674, 3249,
      6450, 12996, 24870, 49284, 95882, 190969, 369666, 724201, 1425261,
      2802276, 5495162, 10764961, 21186827, 41602500, 81686669, 160326244, 314946266, 618516900, 1214288106, 2384368900}, 200]
    CoefficientList[Series[(2 + x^2 + 28 x^3 - 55 x^4 + 26 x^5 + 8 x^6 - 192 x^7 + 359 x^8 - 180 x^9 + 83 x^10 + 552 x^11 - 700 x^12 + 906 x^13 - 583 x^14 - 228 x^15 + 605 x^16 - 1362 x^17 + 596 x^18 - 636 x^19 - 673 x^20 + 684 x^21 - 1045 x^22 + 564 x^23 + 8 x^24 - 154 x^25 + 197 x^26 - 116 x^27 - 107 x^28 + 72 x^29 - 70 x^30 + 36 x^31)/((1 - x) (1 + x) (1 - 2 x - x^2 + 3 x^3 - x^4 - 2 x^5 + x^6) (1 - 4 x + 10 x^2 - 19 x^3 + 28 x^4 - 34 x^5 + 37 x^6 - 34 x^7 + 28 x^8 - 19 x^9 + 10 x^10 - 4 x^11 + x^12) (1 + 4 x + 10 x^2 + 19 x^3 + 28 x^4 + 34 x^5 + 37 x^6 + 34 x^7 + 28 x^8 + 19 x^9 + 10 x^10 + 4 x^11 + x^12)), {x, 0, 199}], x]

Formula

G.f.: x*(2 + x^2 + 28*x^3 - 55*x^4 + 26*x^5 + 8*x^6 - 192*x^7 + 359*x^8 - 180*x^9 + 83*x^10 + 552*x^11 - 700*x^12 + 906*x^13 - 583*x^14 - 228*x^15 + 605*x^16 - 1362*x^17 + 596*x^18 - 636*x^19 - 673*x^20 + 684*x^21 - 1045*x^22 + 564*x^23 + 8*x^24 - 154*x^25 + 197*x^26 - 116*x^27 - 107*x^28 + 72*x^29 - 70*x^30 + 36*x^31)/((1 - x)*(1 + x)*(1 - 2*x - x^2 + 3*x^3 - x^4 - 2*x^5 + x^6)*(1 - 4*x + 10*x^2 - 19*x^3 + 28*x^4 - 34*x^5 + 37*x^6 - 34*x^7 + 28*x^8 - 19*x^9 + 10*x^10 - 4*x^11 + x^12)*(1 + 4*x + 10*x^2 + 19*x^3 + 28*x^4 + 34*x^5 + 37*x^6 + 34*x^7 + 28*x^8 + 19*x^9 + 10*x^10 + 4*x^11 + x^12)). - Andrew Howroyd, Apr 17 2018

Extensions

a(1)-a(2) and terms a(10) and beyond from Andrew Howroyd, Apr 17 2018
Showing 1-2 of 2 results.