A302405 Total domination number of the n-prism graph.
0, 1, 2, 2, 4, 4, 4, 5, 6, 6, 8, 8, 8, 9, 10, 10, 12, 12, 12, 13, 14, 14, 16, 16, 16, 17, 18, 18, 20, 20, 20, 21, 22, 22, 24, 24, 24, 25, 26, 26, 28, 28, 28, 29, 30, 30, 32, 32, 32, 33, 34, 34, 36, 36, 36, 37, 38, 38, 40, 40, 40, 41, 42, 42, 44, 44, 44, 45, 46, 46, 48
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Prism Graph
- Eric Weisstein's World of Mathematics, Total Domination Number
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
Programs
-
Magma
I:=[1,2,2,4,4,4,5,6]; [0] cat [n le 7 select I[n] else Self(n-1) + Self(n-6) - Self(n-7): n in [1..30]]; // G. C. Greubel, Apr 09 2018
-
Mathematica
Table[(3 + (-1)^n + 4 n - Cos[n Pi/3] - 3 Cos[2 n Pi/3] - Sqrt[3] Sin[n Pi/3] + Sin[2 n Pi/3]/Sqrt[3])/6, {n, 0, 50}] LinearRecurrence[{1,0,0,0,0,1,-1}, {1,2,2,4,4,4,5,6}, {0, 50}] CoefficientList[Series[x (1 + x + 2 x^3)/((-1 + x)^2 (1 + x + x^2 + x^3 + x^4 + x^5)), {x, 0, 50}], x]
-
PARI
x='x+O('x^50); concat(0, Vec(x*(1+x+2*x^3)/((1-x)^2*(1+x+ x^2+x^3+ x^4+x^5)))) \\ G. C. Greubel, Apr 09 2018
Formula
a(n) = a(n-1) + a(n-6) - a(n-7).
G.f.: x*(1 + x + 2*x^3)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5)).
a(n) = a(n-6) + 4. - Andrew Howroyd, Apr 17 2018
Comments