A303006 Number of minimal total dominating sets in the n-prism graph.
2, 4, 5, 36, 27, 25, 114, 196, 437, 729, 1674, 3249, 6450, 12996, 24870, 49284, 95882, 190969, 369666, 724201, 1425261, 2802276, 5495162, 10764961, 21186827, 41602500, 81686669, 160326244, 314946266, 618516900, 1214288106, 2384368900, 4681737021, 9193357924
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
- Eric Weisstein's World of Mathematics, Minimal Total Dominating Set.
- Eric Weisstein's World of Mathematics, Prism Graph.
- Index entries for linear recurrences with constant coefficients, signature (2, -2, 3, 4, -7, 5, 0, -21, 39, -24, 21, 33, -36, 63, -33, 0, 33, -63, 36, -33, -21, 24, -39, 21, 0, -5, 7, -4, -3, 2, -2, 1).
Programs
-
Mathematica
Table[3 + 3 (-1)^n + RootSum[1 - 2 # - #^2 + 3 #^3 - #^4 - 2 #^5 + #^6 &, #^n &] + RootSum[1 - 4 # + 10 #^2 - 19 #^3 + 28 #^4 - 34 #^5 + 37 #^6 - 34 #^7 + 28 #^8 - 19 #^9 + 10 #^10 - 4 #^11 + #^12 &, #^n &] + RootSum[1 + 4 # + 10 #^2 + 19 #^3 + 28 #^4 + 34 #^5 + 37 #^6 + 34 #^7 + 28 #^8 + 19 #^9 + 10 #^10 + 4 #^11 + #^12 &, #^n &], {n, 200}] LinearRecurrence[{2, -2, 3, 4, -7, 5, 0, -21, 39, -24, 21, 33, -36, 63, -33, 0, 33, -63, 36, -33, -21, 24, -39, 21, 0, -5, 7, -4, -3, 2, -2, 1}, {2, 4, 5, 36, 27, 25, 114, 196, 437, 729, 1674, 3249, 6450, 12996, 24870, 49284, 95882, 190969, 369666, 724201, 1425261, 2802276, 5495162, 10764961, 21186827, 41602500, 81686669, 160326244, 314946266, 618516900, 1214288106, 2384368900}, 200] CoefficientList[Series[(2 + x^2 + 28 x^3 - 55 x^4 + 26 x^5 + 8 x^6 - 192 x^7 + 359 x^8 - 180 x^9 + 83 x^10 + 552 x^11 - 700 x^12 + 906 x^13 - 583 x^14 - 228 x^15 + 605 x^16 - 1362 x^17 + 596 x^18 - 636 x^19 - 673 x^20 + 684 x^21 - 1045 x^22 + 564 x^23 + 8 x^24 - 154 x^25 + 197 x^26 - 116 x^27 - 107 x^28 + 72 x^29 - 70 x^30 + 36 x^31)/((1 - x) (1 + x) (1 - 2 x - x^2 + 3 x^3 - x^4 - 2 x^5 + x^6) (1 - 4 x + 10 x^2 - 19 x^3 + 28 x^4 - 34 x^5 + 37 x^6 - 34 x^7 + 28 x^8 - 19 x^9 + 10 x^10 - 4 x^11 + x^12) (1 + 4 x + 10 x^2 + 19 x^3 + 28 x^4 + 34 x^5 + 37 x^6 + 34 x^7 + 28 x^8 + 19 x^9 + 10 x^10 + 4 x^11 + x^12)), {x, 0, 199}], x]
Formula
G.f.: x*(2 + x^2 + 28*x^3 - 55*x^4 + 26*x^5 + 8*x^6 - 192*x^7 + 359*x^8 - 180*x^9 + 83*x^10 + 552*x^11 - 700*x^12 + 906*x^13 - 583*x^14 - 228*x^15 + 605*x^16 - 1362*x^17 + 596*x^18 - 636*x^19 - 673*x^20 + 684*x^21 - 1045*x^22 + 564*x^23 + 8*x^24 - 154*x^25 + 197*x^26 - 116*x^27 - 107*x^28 + 72*x^29 - 70*x^30 + 36*x^31)/((1 - x)*(1 + x)*(1 - 2*x - x^2 + 3*x^3 - x^4 - 2*x^5 + x^6)*(1 - 4*x + 10*x^2 - 19*x^3 + 28*x^4 - 34*x^5 + 37*x^6 - 34*x^7 + 28*x^8 - 19*x^9 + 10*x^10 - 4*x^11 + x^12)*(1 + 4*x + 10*x^2 + 19*x^3 + 28*x^4 + 34*x^5 + 37*x^6 + 34*x^7 + 28*x^8 + 19*x^9 + 10*x^10 + 4*x^11 + x^12)). - Andrew Howroyd, Apr 17 2018
Extensions
a(1)-a(2) and terms a(10) and beyond from Andrew Howroyd, Apr 17 2018
Comments