cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A317855 Decimal expansion of a constant related to the asymptotics of A122400.

Original entry on oeis.org

3, 1, 6, 1, 0, 8, 8, 6, 5, 3, 8, 6, 5, 4, 2, 8, 8, 1, 3, 8, 3, 0, 1, 7, 2, 2, 0, 2, 5, 8, 8, 1, 3, 2, 4, 9, 1, 7, 2, 6, 3, 8, 2, 7, 7, 4, 1, 8, 8, 5, 5, 6, 3, 4, 1, 6, 2, 7, 2, 7, 8, 2, 0, 7, 5, 3, 7, 6, 9, 7, 0, 5, 9, 2, 1, 9, 3, 0, 4, 6, 1, 1, 2, 1, 9, 7, 5, 7, 4, 6, 8, 5, 4, 9, 7, 8, 4, 5, 9, 3, 2, 4, 2, 2, 7
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 09 2018

Keywords

Examples

			3.161088653865428813830172202588132491726382774188556341627278...
		

Crossrefs

Programs

  • Mathematica
    r = r /. FindRoot[E^(1/r)/r + (1 + E^(1/r)) * ProductLog[-E^(-1/r)/r] == 0, {r, 3/4}, WorkingPrecision -> 120]; RealDigits[(1 + Exp[1/r])*r^2][[1]]
  • PARI
    r=solve(r=.8,1,exp(1/r)/r + (1+exp(1/r))*lambertw(-exp(-1/r)/r))
    (1+exp(1/r))*r^2 \\ Charles R Greathouse IV, Jun 15 2021

Formula

Equals (1+exp(1/r))*r^2, where r = 0.873702433239668330496568304720719298213992... is the root of the equation exp(1/r)/r + (1+exp(1/r))*LambertW(-exp(-1/r)/r) = 0.

A304639 G.f. A(x) satisfies: 1 = Sum_{n>=0} ( 1/(1-x)^n - A(x) )^n.

Original entry on oeis.org

1, 1, 2, 11, 117, 1735, 31853, 689043, 17079221, 476238926, 14742680162, 501584454703, 18605089712174, 747393133162471, 32332767332220442, 1498961537925543920, 74153115616699819304, 3899494667155151052688, 217246028175467702590241, 12783023090792392539557926, 792236994094236725330142276, 51585659784100723438219893047, 3520987513029712770759434038820
Offset: 0

Views

Author

Paul D. Hanna, May 16 2018

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 117*x^4 + 1735*x^5 + 31853*x^6 + 689043*x^7 + 17079221*x^8 + 476238926*x^9 + 14742680162*x^10 + 501584454703*x^11 + ...
is such that
1 = 1 + (1/(1-x) - A(x)) + (1/(1-x)^2 - A(x))^2  + (1/(1-x)^3 - A(x))^3 + (1/(1-x)^4 - A(x))^4 + (1/(1-x)^5 - A(x))^5 + (1/(1-x)^6 - A(x))^6 + (1/(1-x)^7 - A(x))^7 + ...
Also,
1 = 1/(1 + A(x))  +  (1-x)/((1-x) + A(x))^2  +  (1-x)^2/((1-x)^2 + A(x))^3  +  (1-x)^3/((1-x)^3  +  A(x))^4 + (1-x)^4/((1-x)^4 + A(x))^5  +  (1-x)^5/((1-x)^5 + A(x))^6  +  (1-x)^6/((1-x)^6 + A(x))^7 + ...
PARTICULAR VALUES.
Although the power series A(x) diverges at x = -1, it may be evaluated formally.
Let t = A(-1) = 0.5452189736359494312349502450349441069576127988881794567242641...
then t satisfies
(1) 1 = Sum_{n>=0} ( 1/2^n - t )^n.
(2) 1 = Sum_{n>=0} ( 1 - 2^n*t )^n / 2^(n^2).
(3) 1 = Sum_{n>=0} 2^n / ( 2^n + t )^(n+1).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, (1/(1-x +x^2*O(x^n))^m - Ser(A))^m ) )[#A] ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ( 1/(1-x)^n - A(x) )^n.
(2) 1 = Sum_{n>=0} ( 1 - (1-x)^n*A(x) )^n / (1-x)^(n^2).
(3) 1 = Sum_{n>=0} (1-x)^n / ( (1-x)^n + A(x) )^(n+1).
a(n) ~ c * d^n * n! / sqrt(n), where d = A317855 = 3.16108865386542881383... and c = 0.16107844724485... - Vaclav Kotesovec, Oct 14 2020

A321602 G.f. A(x) satisfies: 1 = Sum_{n>=0} ((1+x)^(2*n) - A(x))^n.

Original entry on oeis.org

1, 2, 5, 68, 1521, 45328, 1660032, 71548008, 3533826841, 196432984748, 12128132342482, 823366216285428, 60966207548525287, 4890600994792550264, 422601696583826709492, 39142599000082019249968, 3869325702147169825040193, 406650337650126697706078146, 45281361448272561712508294157, 5325916931170845646048163850556, 659842223101960470758187538118437
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2018

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 5*x^2 + 68*x^3 + 1521*x^4 + 45328*x^5 + 1660032*x^6 + 71548008*x^7 + 3533826841*x^8 + 196432984748*x^9 + 12128132342482*x^10 + ...
such that
1 = 1  +  ((1+x)^2 - A(x))  +  ((1+x)^4 - A(x))^2  +  ((1+x)^6 - A(x))^3  +  ((1+x)^8 - A(x))^4  +  ((1+x)^10 - A(x))^5  +  ((1+x)^12 - A(x))^6  +  ((1+x)^14 - A(x))^7 + ...
Also,
1 = 1/(1 + A(x))  +  (1+x)^2/(1 + (1+x)^2*A(x))^2  +  (1+x)^8/(1 + (1+x)^4*A(x))^3  +  (1+x)^18/(1 + (1+x)^6*A(x))^4  +  (1+x)^32/(1 + (1+x)^8*A(x))^5  +  (1+x)^50/(1 + (1+x)^10*A(x))^6  + ...
RELATED SERIES.
The logarithmic derivative of the g.f. begins
A'(x)/A(x) = 2 + 6*x + 182*x^2 + 5554*x^3 + 211172*x^4 + 9397920*x^5 + 476737830*x^6 + 27086036234*x^7 + 1702330030676*x^8 + ...
the coefficients of which are all even:
(1/2) * A'(x)/A(x) = 1 + 3*x + 91*x^2 + 2777*x^3 + 105586*x^4 + 4698960*x^5 + 238368915*x^6 + 13543018117*x^7 + 851165015338*x^8 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ((1+x)^(2*m) - Ser(A))^m ) )[#A] );H=A; A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ((1+x)^(2*n) - A(x))^n.
(2) 1 = Sum_{n>=0} (1+x)^(2*n^2) / (1 + (1+x)^(2*n)*A(x))^(n+1).

A321603 G.f. A(x) satisfies: 1 = Sum_{n>=0} ((1+x)^(3*n) - A(x))^n.

Original entry on oeis.org

1, 3, 12, 235, 7872, 351924, 19340668, 1250971416, 92720438955, 7733929764167, 716488771114410, 72981787493017014, 8107675760704948748, 975749719762368998037, 126491959992115408069503, 17576241581408197850363955, 2606439876885873198662077692, 410925212330248782377865281826, 68641203626673300062880912740755, 12110976733338358608040713750036252
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2018

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 12*x^2 + 235*x^3 + 7872*x^4 + 351924*x^5 + 19340668*x^6 + 1250971416*x^7 + 92720438955*x^8 + 7733929764167*x^9 + ...
such that
1 = 1  +  ((1+x)^3 - A(x))  +  ((1+x)^6 - A(x))^2  +  ((1+x)^9 - A(x))^3  +  ((1+x)^12 - A(x))^4  +  ((1+x)^15 - A(x))^5  +  ((1+x)^18 - A(x))^6  +  ((1+x)^21 - A(x))^7 + ...
Also,
1 = 1/(1 + A(x))  +  (1+x)^3/(1 + (1+x)^3*A(x))^2  +  (1+x)^12/(1 + (1+x)^6*A(x))^3  +  (1+x)^27/(1 + (1+x)^9*A(x))^4  +  (1+x)^48/(1 + (1+x)^12*A(x))^5  +  (1+x)^75/(1 + (1+x)^15*A(x))^6  + ...
RELATED SERIES.
The logarithmic derivative of the g.f. begins
A'(x)/A(x) = 3 + 15*x + 624*x^2 + 28731*x^3 + 1638798*x^4 + 109462350*x^5 + 8333782509*x^6 + 710574703107*x^7 + 67015908514587*x^8 + ...
the coefficients of which are all divisible by 3:
(1/3) * A'(x)/A(x) = 1 + 5*x + 208*x^2 + 9577*x^3 + 546266*x^4 + 36487450*x^5 + 2777927503*x^6 + 236858234369*x^7 + 22338636171529*x^8 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ((1+x)^(3*m) - Ser(A))^m ) )[#A] );H=A; A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ((1+x)^(3*n) - A(x))^n.
(2) 1 = Sum_{n>=0} (1+x)^(3*n^2) / (1 + (1+x)^(3*n)*A(x))^(n+1).

A321604 G.f. A(x) satisfies: 1 = Sum_{n>=0} ((1+x)^(4*n) - A(x))^n.

Original entry on oeis.org

1, 4, 22, 564, 25157, 1499576, 109904860, 9480509576, 937113401201, 104240673195936, 12878161899791760, 1749261564410844864, 259132759251207789056, 41585481940418457992816, 7188476201158569394613976, 1331880173688346226092103696, 263358773243148578509342224153, 55363099822436514905885084770968, 12330972024423209530808891225876436, 2900976547500300324930009436969260936
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2018

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 22*x^2 + 564*x^3 + 25157*x^4 + 1499576*x^5 + 109904860*x^6 + 9480509576*x^7 + 937113401201*x^8 + 104240673195936*x^9 + ...
such that
1 = 1  +  ((1+x)^4 - A(x))  +  ((1+x)^8 - A(x))^2  +  ((1+x)^12 - A(x))^3  +  ((1+x)^16 - A(x))^4  +  ((1+x)^20 - A(x))^5  +  ((1+x)^24 - A(x))^6  +  ((1+x)^28 - A(x))^7 + ...
Also,
1 = 1/(1 + A(x))  +  (1+x)^4/(1 + (1+x)^4*A(x))^2  +  (1+x)^16/(1 + (1+x)^8*A(x))^3  +  (1+x)^36/(1 + (1+x)^12*A(x))^4  +  (1+x)^64/(1 + (1+x)^16*A(x))^5  +  (1+x)^100/(1 + (1+x)^20*A(x))^6  + ...
RELATED SERIES.
The logarithmic derivative of the g.f. begins
A'(x)/A(x) = 4 + 28*x + 1492*x^2 + 91788*x^3 + 6981484*x^4 + 621939700*x^5 + 63151305340*x^6 + 7181135905380*x^7 + 903210250234696*x^8 + ...
the coefficients of which are all divisible by 4:
(1/4) * A'(x)/A(x) = 1 + 7*x + 373*x^2 + 22947*x^3 + 1745371*x^4 + 155484925*x^5 + 15787826335*x^6 + 1795283976345*x^7 + 225802562558674*x^8 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ((1+x)^(4*m) - Ser(A))^m ) )[#A] );H=A; A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ((1+x)^(4*n) - A(x))^n.
(2) 1 = Sum_{n>=0} (1+x)^(4*n^2) / (1 + (1+x)^(4*n)*A(x))^(n+1).

A321605 G.f. A(x) satisfies: 1 = Sum_{n>=0} ((1+x)^(5*n) - A(x))^n.

Original entry on oeis.org

1, 5, 35, 1110, 61830, 4607001, 422112085, 45521033720, 5625206604320, 782244114339935, 120812011501389376, 20514224767917807795, 3798925417133114909240, 762102329400356260363990, 164678708686403817727101920, 38140958485665617437764886383, 9427520984195812306085385378080, 2477372683628569966077893189614835, 689743886246438120027048924784220410
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2018

Keywords

Examples

			G.f.: A(x) = 1 + 5*x + 35*x^2 + 1110*x^3 + 61830*x^4 + 4607001*x^5 + 422112085*x^6 + 45521033720*x^7 + 5625206604320*x^8 + 782244114339935*x^9 + ...
such that
1 = 1  +  ((1+x)^5 - A(x))  +  ((1+x)^10 - A(x))^2  +  ((1+x)^15 - A(x))^3  +  ((1+x)^20 - A(x))^4  +  ((1+x)^25 - A(x))^5  +  ((1+x)^30 - A(x))^6  +  ((1+x)^35 - A(x))^7 + ...
Also,
1 = 1/(1 + A(x))  +  (1+x)^5/(1 + (1+x)^5*A(x))^2  +  (1+x)^20/(1 + (1+x)^10*A(x))^3  +  (1+x)^45/(1 + (1+x)^15*A(x))^4  +  (1+x)^80/(1 + (1+x)^20*A(x))^5  +  (1+x)^125/(1 + (1+x)^25*A(x))^6  + ...
RELATED SERIES.
The logarithmic derivative of the g.f. begins
A'(x)/A(x) = 5 + 45*x + 2930*x^2 + 225545*x^3 + 21445630*x^4 + 2388480630*x^5 + 303204843520*x^6 + 43104182972905*x^7 + 6777636393880895*x^8 + ...
the coefficients of which are all divisible by 5:
(1/5) * A'(x)/A(x) = 1 + 9*x + 586*x^2 + 45109*x^3 + 4289126*x^4 + 477696126*x^5 + 60640968704*x^6 + 8620836594581*x^7 + 1355527278776179*x^8 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ((1+x)^(5*m) - Ser(A))^m ) )[#A] );H=A; A[n+1]}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ((1+x)^(5*n) - A(x))^n.
(2) 1 = Sum_{n>=0} (1+x)^(5*n^2) / (1 + (1+x)^(5*n)*A(x))^(n+1).

A303926 G.f. A(x) satisfies: 1 = Sum_{n>=0} ( (1 + x*A(x))^n - A(x) )^n.

Original entry on oeis.org

1, 1, 2, 12, 130, 1912, 34715, 743217, 18255118, 505070221, 15532353184, 525533183871, 19403298048040, 776437898905606, 33479679336072541, 1547841068340501230, 76390272348430998076, 4008960603544297652028, 222949077434693015546579, 13098226217965693342007714, 810657425687536689904281842
Offset: 0

Views

Author

Paul D. Hanna, May 03 2018

Keywords

Comments

Compare to: 1 = Sum_{n>=0} ( (1 + x*G(x))^k - G(x) )^n holds trivially for fixed k>0 when G(x) = (1 + x*G(x))^k ; this sequence explores the case when k varies with n.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 12*x^3 + 130*x^4 + 1912*x^5 + 34715*x^6 + 743217*x^7 + 18255118*x^8 + 505070221*x^9 + 15532353184*x^10 + ...
such that
1 = 1 + ((1 + x*A(x)) - A(x)) + ((1 + x*A(x))^2 - A(x))^2 + ((1 + x*A(x))^3 - A(x))^3 + ((1 + x*A(x))^4 - A(x))^4 + ((1 + x*A(x))^5 - A(x))^5 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0,n, A=concat(A,0); A[#A] = Vec( sum(m=0,#A, ( (1 + x*Ser(A))^m - Ser(A))^m ) )[#A] ); A[n+1]}
    for(n=0,30, print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ( (1 + x*A(x))^n - A(x) )^n.
(2) 1 = Sum_{n>=0} (1 + x*A(x))^(n^2) / (1 + A(x)*(1 + x*A(x))^n)^(n+1). - Paul D. Hanna, Dec 06 2018
G.f.: x/Series_Reversion( x*F(x) ) such that 1 = Sum_{n>=0} ((1 + x*F(x)^2)^n - F(x))^n, where F(x) is the g.f. of A303927.
G.f.: sqrt( x/Series_Reversion( x*G(x)^2 ) ) such that 1 = Sum_{n>=0} ((1 + x*G(x)^3)^n - G(x))^n, where G(x) is the g.f. of A303928.

A304642 G.f. A(x) satisfies: 1 = Sum_{n>=0} ( (1+x)^(n+1) - A(x) )^n.

Original entry on oeis.org

1, 2, 2, 10, 112, 1670, 30682, 663606, 16443254, 458349374, 14184612446, 482476888374, 17892738705864, 718662489646314, 31085968593760190, 1441017859748316954, 71281146361450601326, 3748236082140499881942, 208808936226479892694126, 12286084218797404915838902, 761413942238514103243322732, 49577303456014047226843229946, 3383829651598944830489407813422
Offset: 0

Views

Author

Paul D. Hanna, May 16 2018

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 2*x^2 + 10*x^3 + 112*x^4 + 1670*x^5 + 30682*x^6 + 663606*x^7 + 16443254*x^8 + 458349374*x^9 + 14184612446*x^10 + 482476888374*x^11 + ...
such that
1 = 1  +  ((1+x)^2 - A(x))  +  ((1+x)^3 - A(x))^2  +  ((1+x)^4 - A(x))^3  +  ((1+x)^5 - A(x))^4  +  ((1+x)^6 - A(x))^5  +  ((1+x)^7 - A(x))^6  +  ((1+x)^8 - A(x))^7 + ...
Also,
1 = 1/(1 + A(x))  +  (1+x)^2/(1 + (1+x)*A(x))^2  +  (1+x)^6/(1 + (1+x)^2*A(x))^3  +  (1+x)^12/(1 + (1+x)^3*A(x))^4  +  (1+x)^20/(1 + (1+x)^4*A(x))^5  +  (1+x)^30/(1 + (1+x)^5*A(x))^6  +  (1+x)^42/(1 + (1+x)^6*A(x))^7 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ((1+x)^(m+1) - Ser(A))^m ) )[#A] ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} ((1+x)^(n+1) - A(x))^n.
(2) 1 = Sum_{n>=0} (1+x)^(n*(n+1)) / (1 + (1+x)^n*A(x))^(n+1).
a(n) ~ c * d^n * n! / sqrt(n), where d = A317855 = 3.16108865386542881383... and c = 0.154769618099522133628... - Vaclav Kotesovec, Oct 14 2020

A326282 G.f. A(x) satisfies: 1 = Sum_{n>=0} 2^n * ((1+x)^n - A(x))^n.

Original entry on oeis.org

1, 1, 2, 28, 586, 16336, 559164, 22519620, 1039209116, 53968031108, 3112841732920, 197413519635632, 13654508980460736, 1023144120035225664, 82581014079320743504, 7144332294806845079568, 659630258631919908187784, 64748755209330058463666656, 6733915902264715745675338784, 739732094650896407811045989408, 85594689069528757090534336595600
Offset: 0

Views

Author

Paul D. Hanna, Jun 22 2019

Keywords

Comments

More generally, the following sums are equal:
(1) Sum_{n>=0} binomial(n+k-1, n) * r^n * (p + q^n)^n,
(2) Sum_{n>=0} binomial(n+k-1, n) * r^n * q^(n^2) / (1 - r*p*q^n)^(n+k),
for any fixed integer k; here, k = 1 with r = 2, p = -A(x), q = (1+x).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 28*x^3 + 586*x^4 + 16336*x^5 + 559164*x^6 + 22519620*x^7 + 1039209116*x^8 + 53968031108*x^9 + 3112841732920*x^10 + ...
such that
1 = 1  +  2*((1+x) - A(x))  +  2^2*((1+x)^2 - A(x))^2  +  2^3*((1+x)^3 - A(x))^3  +  2^4*((1+x)^4 - A(x))^4  +  2^5*((1+x)^5 - A(x))^5  +  2^6*((1+x)^6 - A(x))^6  +  2^7*((1+x)^7 - A(x))^7 + ...
Also,
1 = 1/(1 + 2*A(x))  +  2*(1+x)/(1 + 2*(1+x)*A(x))^2  +  2^2*(1+x)^4/(1 + 2*(1+x)^2*A(x))^3  +  2^3*(1+x)^9/(1 + 2*(1+x)^3*A(x))^4  +  2^4*(1+x)^16/(1 + 2*(1+x)^4*A(x))^5  +  2^5*(1+x)^25/(1 + 2*(1+x)^5*A(x))^6  +  2^6*(1+x)^36/(1 + 2*(1+x)^6*A(x))^7 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, 2^m*((1+x)^m - Ser(A))^m ) )[#A]/2 ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} 2^n * ((1+x)^n - A(x))^n.
(2) 1 = Sum_{n>=0} 2^n * (1+x)^(n^2) / (1 + 2*(1+x)^n*A(x))^(n+1).
a(n) ~ c * (1 + 2*exp(1/r))^n * r^(2*n) * n! / sqrt(n), where r = 0.925556278640887084941460444526398190071550948416... is the root of the equation exp(1/r) * (1 + 1/(r*LambertW(-exp(-1/r)/r))) = -1/2 and c = 0.06492129653731... - Vaclav Kotesovec, Oct 13 2020

A326283 G.f. A(x) satisfies: 1 = Sum_{n>=0} 3^n * ((1+x)^n - A(x))^n.

Original entry on oeis.org

1, 1, 3, 60, 1839, 75006, 3756681, 221373108, 14946242445, 1135512643905, 95807726020377, 8887382719047009, 899076658872459384, 98527185014966618211, 11629941100277822632476, 1471364340776928876041874, 198658352816171170123764339, 28515062757712810453709971653, 4336489052405032386983807856510, 696570875522773511632334350536870
Offset: 0

Views

Author

Paul D. Hanna, Jun 22 2019

Keywords

Comments

More generally, the following sums are equal:
(1) Sum_{n>=0} binomial(n+k-1, n) * r^n * (p + q^n)^n,
(2) Sum_{n>=0} binomial(n+k-1, n) * r^n * q^(n^2) / (1 - r*p*q^n)^(n+k),
for any fixed integer k; here, k = 1 with r = 3, p = -A(x), q = (1+x).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 60*x^3 + 1839*x^4 + 75006*x^5 + 3756681*x^6 + 221373108*x^7 + 14946242445*x^8 + 1135512643905*x^9 + 95807726020377*x^10 + ...
such that
1 = 1  +  3*((1+x) - A(x))  +  3^2*((1+x)^2 - A(x))^2  +  3^3*((1+x)^3 - A(x))^3  +  3^4*((1+x)^4 - A(x))^4  +  3^5*((1+x)^5 - A(x))^5  +  3^6*((1+x)^6 - A(x))^6  +  3^7*((1+x)^7 - A(x))^7 + ...
Also,
1 = 1/(1 + 3*A(x))  +  3*(1+x)/(1 + 3*(1+x)*A(x))^2  +  3^2*(1+x)^4/(1 + 3*(1+x)^2*A(x))^3  +  3^3*(1+x)^9/(1 + 3*(1+x)^3*A(x))^4  +  3^4*(1+x)^16/(1 + 3*(1+x)^4*A(x))^5  +  3^5*(1+x)^25/(1 + 3*(1+x)^5*A(x))^6  +  3^6*(1+x)^36/(1 + 3*(1+x)^6*A(x))^7 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, 3^m*((1+x)^m - Ser(A))^m ) )[#A]/3 ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} 3^n * ((1+x)^n - A(x))^n.
(2) 1 = Sum_{n>=0} 3^n * (1+x)^(n^2) / (1 + 3*(1+x)^n*A(x))^(n+1).
a(n) ~ c * (1 + 3*exp(1/r))^n * r^(2*n) * n! / sqrt(n), where r = 0.947093169766093813913446822751643203941993193936... is the root of the equation exp(1/r) * (1 + 1/(r*LambertW(-exp(-1/r)/r))) = -1/3 and c = 0.04495001143628... - Vaclav Kotesovec, Oct 13 2020
Showing 1-10 of 17 results. Next