A303056
G.f. A(x) satisfies: 1 = Sum_{n>=0} ((1+x)^n - A(x))^n.
Original entry on oeis.org
1, 1, 1, 8, 89, 1326, 24247, 521764, 12867985, 357229785, 11017306489, 373675921093, 13825260663882, 554216064798423, 23934356706763264, 1108017262467214486, 54747529760516714323, 2876096694574711401525, 160092696678371426933342, 9413031424290635395882462, 583000844360279565483710624
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 8*x^3 + 89*x^4 + 1326*x^5 + 24247*x^6 + 521764*x^7 + 12867985*x^8 + 357229785*x^9 + 11017306489*x^10 + ...
such that
1 = 1 + ((1+x) - A(x)) + ((1+x)^2 - A(x))^2 + ((1+x)^3 - A(x))^3 + ((1+x)^4 - A(x))^4 + ((1+x)^5 - A(x))^5 + ((1+x)^6 - A(x))^6 + ((1+x)^7 - A(x))^7 + ...
Also,
1 = 1/(1 + A(x)) + (1+x)/(1 + (1+x)*A(x))^2 + (1+x)^4/(1 + (1+x)^2*A(x))^3 + (1+x)^9/(1 + (1+x)^3*A(x))^4 + (1+x)^16/(1 + (1+x)^4*A(x))^5 + (1+x)^25/(1 + (1+x)^5*A(x))^6 + (1+x)^36/(1 + (1+x)^6*A(x))^7 + ...
RELATED SERIES.
log(A(x)) = x + x^2/2 + 22*x^3/3 + 325*x^4/4 + 6186*x^5/5 + 137380*x^6/6 + 3478651*x^7/7 + 98674253*x^8/8 + 3096911434*x^9/9 + ...
PARTICULAR VALUES.
Although the power series A(x) diverges at x = -1/2, it may be evaluated formally.
Let t = A(-1/2) = 0.545218973635949431234950245034944106957612798888179456724264...
then t satisfies
(1) 1 = Sum_{n>=0} ( 1/2^n - t )^n.
(2) 1 = Sum_{n>=0} 2^n / ( 2^n + t )^(n+1).
Also,
A(r) = 1/2 at r = -0.54683649902292991492196620520872286547799291909992048564578...
where
(1) 1 = Sum_{n>=0} ( (1+r)^n - 1/2 )^n.
(2) 1 = Sum_{n>=0} (1+r)^(-n) / ( 1/(1+r)^n + 1/2 )^(n+1).
-
{a(n) = my(A=[1]); for(i=0,n, A=concat(A,0); A[#A] = Vec( sum(m=0,#A, ((1+x)^m - Ser(A))^m ) )[#A] );A[n+1]}
for(n=0,30, print1(a(n),", "))
A321602
G.f. A(x) satisfies: 1 = Sum_{n>=0} ((1+x)^(2*n) - A(x))^n.
Original entry on oeis.org
1, 2, 5, 68, 1521, 45328, 1660032, 71548008, 3533826841, 196432984748, 12128132342482, 823366216285428, 60966207548525287, 4890600994792550264, 422601696583826709492, 39142599000082019249968, 3869325702147169825040193, 406650337650126697706078146, 45281361448272561712508294157, 5325916931170845646048163850556, 659842223101960470758187538118437
Offset: 0
G.f.: A(x) = 1 + 2*x + 5*x^2 + 68*x^3 + 1521*x^4 + 45328*x^5 + 1660032*x^6 + 71548008*x^7 + 3533826841*x^8 + 196432984748*x^9 + 12128132342482*x^10 + ...
such that
1 = 1 + ((1+x)^2 - A(x)) + ((1+x)^4 - A(x))^2 + ((1+x)^6 - A(x))^3 + ((1+x)^8 - A(x))^4 + ((1+x)^10 - A(x))^5 + ((1+x)^12 - A(x))^6 + ((1+x)^14 - A(x))^7 + ...
Also,
1 = 1/(1 + A(x)) + (1+x)^2/(1 + (1+x)^2*A(x))^2 + (1+x)^8/(1 + (1+x)^4*A(x))^3 + (1+x)^18/(1 + (1+x)^6*A(x))^4 + (1+x)^32/(1 + (1+x)^8*A(x))^5 + (1+x)^50/(1 + (1+x)^10*A(x))^6 + ...
RELATED SERIES.
The logarithmic derivative of the g.f. begins
A'(x)/A(x) = 2 + 6*x + 182*x^2 + 5554*x^3 + 211172*x^4 + 9397920*x^5 + 476737830*x^6 + 27086036234*x^7 + 1702330030676*x^8 + ...
the coefficients of which are all even:
(1/2) * A'(x)/A(x) = 1 + 3*x + 91*x^2 + 2777*x^3 + 105586*x^4 + 4698960*x^5 + 238368915*x^6 + 13543018117*x^7 + 851165015338*x^8 + ...
-
{a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ((1+x)^(2*m) - Ser(A))^m ) )[#A] );H=A; A[n+1]}
for(n=0,30,print1(a(n),", "))
A321604
G.f. A(x) satisfies: 1 = Sum_{n>=0} ((1+x)^(4*n) - A(x))^n.
Original entry on oeis.org
1, 4, 22, 564, 25157, 1499576, 109904860, 9480509576, 937113401201, 104240673195936, 12878161899791760, 1749261564410844864, 259132759251207789056, 41585481940418457992816, 7188476201158569394613976, 1331880173688346226092103696, 263358773243148578509342224153, 55363099822436514905885084770968, 12330972024423209530808891225876436, 2900976547500300324930009436969260936
Offset: 0
G.f.: A(x) = 1 + 4*x + 22*x^2 + 564*x^3 + 25157*x^4 + 1499576*x^5 + 109904860*x^6 + 9480509576*x^7 + 937113401201*x^8 + 104240673195936*x^9 + ...
such that
1 = 1 + ((1+x)^4 - A(x)) + ((1+x)^8 - A(x))^2 + ((1+x)^12 - A(x))^3 + ((1+x)^16 - A(x))^4 + ((1+x)^20 - A(x))^5 + ((1+x)^24 - A(x))^6 + ((1+x)^28 - A(x))^7 + ...
Also,
1 = 1/(1 + A(x)) + (1+x)^4/(1 + (1+x)^4*A(x))^2 + (1+x)^16/(1 + (1+x)^8*A(x))^3 + (1+x)^36/(1 + (1+x)^12*A(x))^4 + (1+x)^64/(1 + (1+x)^16*A(x))^5 + (1+x)^100/(1 + (1+x)^20*A(x))^6 + ...
RELATED SERIES.
The logarithmic derivative of the g.f. begins
A'(x)/A(x) = 4 + 28*x + 1492*x^2 + 91788*x^3 + 6981484*x^4 + 621939700*x^5 + 63151305340*x^6 + 7181135905380*x^7 + 903210250234696*x^8 + ...
the coefficients of which are all divisible by 4:
(1/4) * A'(x)/A(x) = 1 + 7*x + 373*x^2 + 22947*x^3 + 1745371*x^4 + 155484925*x^5 + 15787826335*x^6 + 1795283976345*x^7 + 225802562558674*x^8 + ...
-
{a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ((1+x)^(4*m) - Ser(A))^m ) )[#A] );H=A; A[n+1]}
for(n=0,30,print1(a(n),", "))
A321605
G.f. A(x) satisfies: 1 = Sum_{n>=0} ((1+x)^(5*n) - A(x))^n.
Original entry on oeis.org
1, 5, 35, 1110, 61830, 4607001, 422112085, 45521033720, 5625206604320, 782244114339935, 120812011501389376, 20514224767917807795, 3798925417133114909240, 762102329400356260363990, 164678708686403817727101920, 38140958485665617437764886383, 9427520984195812306085385378080, 2477372683628569966077893189614835, 689743886246438120027048924784220410
Offset: 0
G.f.: A(x) = 1 + 5*x + 35*x^2 + 1110*x^3 + 61830*x^4 + 4607001*x^5 + 422112085*x^6 + 45521033720*x^7 + 5625206604320*x^8 + 782244114339935*x^9 + ...
such that
1 = 1 + ((1+x)^5 - A(x)) + ((1+x)^10 - A(x))^2 + ((1+x)^15 - A(x))^3 + ((1+x)^20 - A(x))^4 + ((1+x)^25 - A(x))^5 + ((1+x)^30 - A(x))^6 + ((1+x)^35 - A(x))^7 + ...
Also,
1 = 1/(1 + A(x)) + (1+x)^5/(1 + (1+x)^5*A(x))^2 + (1+x)^20/(1 + (1+x)^10*A(x))^3 + (1+x)^45/(1 + (1+x)^15*A(x))^4 + (1+x)^80/(1 + (1+x)^20*A(x))^5 + (1+x)^125/(1 + (1+x)^25*A(x))^6 + ...
RELATED SERIES.
The logarithmic derivative of the g.f. begins
A'(x)/A(x) = 5 + 45*x + 2930*x^2 + 225545*x^3 + 21445630*x^4 + 2388480630*x^5 + 303204843520*x^6 + 43104182972905*x^7 + 6777636393880895*x^8 + ...
the coefficients of which are all divisible by 5:
(1/5) * A'(x)/A(x) = 1 + 9*x + 586*x^2 + 45109*x^3 + 4289126*x^4 + 477696126*x^5 + 60640968704*x^6 + 8620836594581*x^7 + 1355527278776179*x^8 + ...
-
{a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ((1+x)^(5*m) - Ser(A))^m ) )[#A] );H=A; A[n+1]}
for(n=0,30,print1(a(n),", "))
A326263
G.f. A(x) satisfies: 1 = Sum_{n>=0} ( 1/(1-x)^(3*n) - A(x) )^n.
Original entry on oeis.org
1, 3, 15, 262, 8616, 384873, 21181421, 1372455324, 101895990777, 8511828635054, 789539638329648, 80506096148928303, 8951189588697000825, 1078020157296224938479, 139830500253903232730304, 19438947952499889395212003, 2883820412306778479104733811, 454810046719340404484233328331, 75993667094400965507408118716882, 13411571696501962452150617362998648, 2493074269436929464139674369969509811
Offset: 0
G.f.: A(x) = 1 + 3*x + 15*x^2 + 262*x^3 + 8616*x^4 + 384873*x^5 + 21181421*x^6 + 1372455324*x^7 + 101895990777*x^8 + 8511828635054*x^9 + 789539638329648*x^10 + ...
such that
1 = 1 + (1/(1-x)^3 - A(x)) + (1/(1-x)^6 - A(x))^2 + (1/(1-x)^9 - A(x))^3 + (1/(1-x)^12 - A(x))^4 + (1/(1-x)^15 - A(x))^5 + (1/(1-x)^18 - A(x))^6 + (1/(1-x)^21 - A(x))^7 + ...
Also,
1 = 1/(1 + A(x)) + (1-x)^3/((1-x)^3 + A(x))^2 + (1-x)^6/((1-x)^6 + A(x))^3 + (1-x)^9/((1-x)^9 + A(x))^4 + (1-x)^12/((1-x)^12 + A(x))^5 + (1-x)^15/((1-x)^15 + A(x))^6 + (1-x)^18/((1-x)^18 + A(x))^7 + ...
-
{a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ((1-x)^(-3*m) - Ser(A))^m ) )[#A] ); H=A; A[n+1]}
for(n=0, 30, print1(a(n), ", "))
Showing 1-5 of 5 results.
Comments