A303056
G.f. A(x) satisfies: 1 = Sum_{n>=0} ((1+x)^n - A(x))^n.
Original entry on oeis.org
1, 1, 1, 8, 89, 1326, 24247, 521764, 12867985, 357229785, 11017306489, 373675921093, 13825260663882, 554216064798423, 23934356706763264, 1108017262467214486, 54747529760516714323, 2876096694574711401525, 160092696678371426933342, 9413031424290635395882462, 583000844360279565483710624
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 8*x^3 + 89*x^4 + 1326*x^5 + 24247*x^6 + 521764*x^7 + 12867985*x^8 + 357229785*x^9 + 11017306489*x^10 + ...
such that
1 = 1 + ((1+x) - A(x)) + ((1+x)^2 - A(x))^2 + ((1+x)^3 - A(x))^3 + ((1+x)^4 - A(x))^4 + ((1+x)^5 - A(x))^5 + ((1+x)^6 - A(x))^6 + ((1+x)^7 - A(x))^7 + ...
Also,
1 = 1/(1 + A(x)) + (1+x)/(1 + (1+x)*A(x))^2 + (1+x)^4/(1 + (1+x)^2*A(x))^3 + (1+x)^9/(1 + (1+x)^3*A(x))^4 + (1+x)^16/(1 + (1+x)^4*A(x))^5 + (1+x)^25/(1 + (1+x)^5*A(x))^6 + (1+x)^36/(1 + (1+x)^6*A(x))^7 + ...
RELATED SERIES.
log(A(x)) = x + x^2/2 + 22*x^3/3 + 325*x^4/4 + 6186*x^5/5 + 137380*x^6/6 + 3478651*x^7/7 + 98674253*x^8/8 + 3096911434*x^9/9 + ...
PARTICULAR VALUES.
Although the power series A(x) diverges at x = -1/2, it may be evaluated formally.
Let t = A(-1/2) = 0.545218973635949431234950245034944106957612798888179456724264...
then t satisfies
(1) 1 = Sum_{n>=0} ( 1/2^n - t )^n.
(2) 1 = Sum_{n>=0} 2^n / ( 2^n + t )^(n+1).
Also,
A(r) = 1/2 at r = -0.54683649902292991492196620520872286547799291909992048564578...
where
(1) 1 = Sum_{n>=0} ( (1+r)^n - 1/2 )^n.
(2) 1 = Sum_{n>=0} (1+r)^(-n) / ( 1/(1+r)^n + 1/2 )^(n+1).
-
{a(n) = my(A=[1]); for(i=0,n, A=concat(A,0); A[#A] = Vec( sum(m=0,#A, ((1+x)^m - Ser(A))^m ) )[#A] );A[n+1]}
for(n=0,30, print1(a(n),", "))
A303923
G.f. A(x) satisfies: 1 = Sum_{n>=0} ( 1 + x*A(x)^n - A(x) )^n.
Original entry on oeis.org
1, 1, 1, 1, 2, 6, 22, 92, 419, 2066, 10863, 60459, 354381, 2177439, 13979759, 93527819, 650509643, 4694372980, 35086564926, 271174745565, 2164066408692, 17808271012127, 150925549288155, 1315804758238582, 11787981398487995, 108409978503340041, 1022519935940220983, 9882436548778410911, 97788364370359938816
Offset: 0
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 6*x^5 + 22*x^6 + 92*x^7 + 419*x^8 + 2066*x^9 + 10863*x^10 + 60459*x^11 + 354381*x^12 + ...
such that
1 = 1 + (1 + x*A(x) - A(x)) + (1 + x*A(x)^2 - A(x))^2 + (1 + x*A(x)^3 - A(x))^3 + (1 + x*A(x)^4 - A(x))^4 + (1 + x*A(x)^5 - A(x))^5 + ...
-
{a(n) = my(A=[1]); for(i=0,n, A=concat(A,0); A[#A] = Vec( sum(m=0,#A, ( 1 + x*Ser(A)^m - Ser(A))^m ) )[#A] ); A[n+1]}
for(n=0,30, print1(a(n),", "))
A303927
G.f. A(x) satisfies: 1 = Sum_{n>=0} ( (1 + x*A(x)^2)^n - A(x) )^n.
Original entry on oeis.org
1, 1, 3, 19, 199, 2863, 51280, 1087107, 26492959, 728234294, 22273547313, 750180870861, 27591387247199, 1100527782602563, 47324815446060104, 2182852921566858499, 107515416285928793865, 5632697086212688424650, 312779421789041421062682, 18351511395587408908636348, 1134459736825581425674735933
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 19*x^3 + 199*x^4 + 2863*x^5 + 51280*x^6 + 1087107*x^7 + 26492959*x^8 + 728234294*x^9 + 22273547313*x^10 + ...
such that
1 = 1 + ((1 + x*A(x)^2) - A(x)) + ((1 + x*A(x)^2)^2 - A(x))^2 + ((1 + x*A(x)^2)^3 - A(x))^3 + ((1 + x*A(x)^2)^4 - A(x))^4 + ((1 + x*A(x)^2)^5 - A(x))^5 + ...
-
{a(n) = my(A=[1]); for(i=0,n, A=concat(A,0); A[#A] = Vec( sum(m=0,#A, ( (1 + x*Ser(A)^2)^m - Ser(A))^m ) )[#A] ); A[n+1]}
for(n=0,30, print1(a(n),", "))
A303928
G.f. A(x) satisfies: 1 = Sum_{n>=0} ( (1 + x*A(x)^3)^n - A(x) )^n.
Original entry on oeis.org
1, 1, 4, 29, 312, 4454, 78649, 1644280, 39580036, 1076460972, 32628557331, 1090654903233, 39861817143230, 1581648436369772, 67718096677762406, 3112120229328860775, 152815413664021339930, 7985028281346030147672, 442406826626726978612624, 25906474516335623637923581, 1598761621228278791567817906
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 29*x^3 + 312*x^4 + 4454*x^5 + 78649*x^6 + 1644280*x^7 + 39580036*x^8 + 1076460972*x^9 + 32628557331*x^10 + ...
such that
1 = 1 + ((1 + x*A(x)^3) - A(x)) + ((1 + x*A(x)^3)^2 - A(x))^2 + ((1 + x*A(x)^3)^3 - A(x))^3 + ((1 + x*A(x)^3)^4 - A(x))^4 + ((1 + x*A(x)^3)^5 - A(x))^5 + ...
-
{a(n) = my(A=[1]); for(i=0,n, A=concat(A,0); A[#A] = Vec( sum(m=0,#A, ( (1 + x*Ser(A)^3)^m - Ser(A))^m ) )[#A] ); A[n+1]}
for(n=0,30, print1(a(n),", "))
Showing 1-4 of 4 results.
Comments