A303093 Balanced primes of order one ending in 3.
53, 173, 263, 373, 563, 593, 653, 733, 1103, 1123, 1223, 1753, 2903, 2963, 3313, 3733, 4013, 4993, 5113, 5303, 5393, 5563, 6073, 6263, 6323, 6373, 6863, 7523, 7583, 7823, 8713, 9473, 10253, 10853, 11903, 11933, 12583, 12653, 12973, 13043, 13463, 14543, 14753
Offset: 1
Examples
53 = (47 + 53 + 59)/3 = 159/3 and 53 = 5*10 + 3.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
GAP
P:=Filtered([1..15000],IsPrime);; a:=Filtered(List(Filtered(List([0..Length(P)-3],k->List([1..3],j->P[j+k])),i->Sum(i)/3=i[2]),m->m[2]),l-> l mod 10=3);
-
Maple
p:=ithprime: a:=n->`if`(add(p(n-k),k=-1..1)=3*p(n) and modp(p(n), 10) = 3,p(n),NULL): seq(a(n),n=3..2000);
-
Mathematica
Select[Partition[Prime[Range[2000]],3,1],Mean[#]==#[[2]]&&Mod[#[[2]],10]==3&][[All, 2]] (* Harvey P. Dale, Apr 09 2022 *)