A303123 Numbers whose sum of divisors is the square of one of their divisors.
1, 364, 1080, 1782, 8736, 30256, 86800, 90768, 149856, 632400, 828816, 1033560, 2467600, 8182944, 9587160, 10593720, 12239136, 15487600, 16702800, 23194080, 23556960, 25371360, 33330528, 35746920, 35889480, 36036000, 40753440, 44013120, 45890208, 46462800, 49035168
Offset: 1
Keywords
Examples
Divisors of 364 are 1, 2, 4, 7, 13, 14, 26, 28, 52, 91, 182, 364 and their sum is 784 = 28^2.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..900 (terms < 10^13)
Programs
-
Maple
with(numtheory): P:=proc(q) local a,k,n; for n from 1 to q do a:=sort([op(divisors(n))]); for k from 1 to nops(a) do if sigma(n)=a[k]^2 then print(n); break; fi; od; od; end: P(10^9); # Alternative: filter:= proc(n) local s; s:= numtheory:-sigma(n); issqr(s) and n^2 mod s = 0 end proc: select(filter, [$1..10^7]); # Robert Israel, May 10 2018
-
Mathematica
Reap[For[k = 1, k <= 10^7, k++, If[AnyTrue[Divisors[k], DivisorSigma[1, k] == #^2&], Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Jun 05 2020 *)
-
PARI
isok(n) = (s = sigma(n)) && issquare(s) && !(n % sqrtint(s)); \\ Michel Marcus, May 04 2018
Comments