cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A303994 Numbers whose sum of divisors is the fourth power of one of their divisors.

Original entry on oeis.org

1, 510, 642, 3394440, 3629640, 3653640, 3663240, 3673080, 3701160, 3736920, 3901080, 3958680, 4077960, 4137240, 4240920, 4251480, 4256520, 4273320, 4274520, 4319880, 7300854, 12798240, 13362720, 14405664, 15170820, 16173024, 16342368, 16354884, 16361184, 16957668, 17113404
Offset: 1

Views

Author

Paolo P. Lava, May 04 2018

Keywords

Comments

Subset of A019422.

Examples

			Divisors of 510 are 1, 2, 3, 5, 6, 10, 15, 17, 30, 34, 51, 85, 102, 170, 255, 510 and their sum is 1296 = 6^4.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n;
    for n from 1 to q do a:=sort([op(divisors(n))]);
    for k from 1 to nops(a) do if sigma(n)=a[k]^4 then print(n); break; fi; od; od; end: P(10^9);
  • Mathematica
    Select[Range[17114000],MemberQ[Divisors[#]^4,DivisorSigma[1,#]]&] (* Harvey P. Dale, Jul 22 2021 *)
  • PARI
    isok(n) = (n==1) || (ispower(s=sigma(n), 4) && !(n % sqrtnint(s, 4))); \\ Michel Marcus, May 05 2018

Extensions

More terms from Michel Marcus, May 05 2018

A303993 Numbers whose sum of divisors is the cube of one of their divisors.

Original entry on oeis.org

1, 102, 8148, 63720, 66120, 71880, 196896, 446040, 452760, 462840, 471960, 503160, 517320, 544920, 549240, 554280, 559320, 575880, 756400, 1458912, 1499232, 1579872, 1634040, 1659960, 1748520, 5294800, 9740640, 10103520, 11103456, 11438280, 11583264, 11619720, 11915640
Offset: 1

Views

Author

Paolo P. Lava, May 04 2018

Keywords

Comments

Subset of A020477.

Examples

			Divisors of 102 are 1, 2, 3, 6, 17, 34, 51, 102 and their sum is 216 = 6^3.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n;
    for n from 1 to q do a:=sort([op(divisors(n))]);
    for k from 1 to nops(a) do if sigma(n)=a[k]^3 then print(n); break; fi; od; od; end: P(10^9);
  • Mathematica
    Select[Range[10^6], Mod[#, DivisorSigma[1, #]^(1/3)] == 0 &] (* Michael De Vlieger, May 06 2018 *)
  • PARI
    isok(n) = (n==1) || (ispower(s=sigma(n), 3) && !(n % sqrtnint(s, 3))); \\ Michel Marcus, May 05 2018

A303995 Numbers whose sum of divisors is the fifth power of one of their divisors.

Original entry on oeis.org

1, 3210, 3498, 3882, 6453804, 7873684, 7943640, 8028120, 8099880, 9112230, 9561990, 10079430, 182626920, 192651480, 196192920, 199939320, 200271960, 201632760, 203289240, 206367480, 206645880, 207815160, 208955160, 210368760, 210406680, 210717720, 211645560
Offset: 1

Views

Author

Paolo P. Lava, May 04 2018

Keywords

Comments

Subset of A019423.

Examples

			Divisors of 3210 are 1, 2, 3, 5, 6, 10, 15, 30, 107, 214, 321, 535, 642, 1070, 1605, 3210 and their sum is 7776 = 6^5.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n;
    for n from 1 to q do a:=sort([op(divisors(n))]);
    for k from 1 to nops(a) do if sigma(n)=a[k]^5 then print(n); break; fi; od; od; end: P(10^9);
  • Mathematica
    Select[Range[10^4], IntegerQ[t = DivisorSigma[1, #]^(1/5)] && Mod[#, t] == 0 &] (* Giovanni Resta, May 04 2018 *)
  • PARI
    isok(n) = (n==1) || (ispower(s=sigma(n), 5) && !(n % sqrtnint(s, 5))); \\ Michel Marcus, May 05 2018

Extensions

a(13)-a(27) from Giovanni Resta, May 04 2018

A303996 Numbers whose sum of divisors is the sixth power of one of their divisors.

Original entry on oeis.org

1, 17490, 19410, 22578, 2823492, 162523452, 165982908, 216731788, 221416468, 221940628, 226768440, 230365560, 232815480, 234896520, 238942920, 240737160, 241362120, 242067720, 242454120, 242655720, 258182910, 264254670, 268298190, 272819070, 277297710, 286008510
Offset: 1

Views

Author

Paolo P. Lava, May 04 2018

Keywords

Comments

Subset of A019424.

Examples

			Divisors of 17490 are 1, 2, 3, 5, 6, 10, 11, 15, 22, 30, 33, 53, 55, 66, 106, 110, 159, 165, 265, 318, 330, 530, 583, 795, 1166, 1590, 1749, 2915, 3498, 5830, 8745, 17490 and their sum is 46656 = 6^6.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n;
    for n from 1 to q do a:=sort([op(divisors(n))]);
    for k from 1 to nops(a) do if sigma(n)=a[k]^6 then print(n); break; fi; od; od; end: P(10^9);
  • PARI
    isok(n) = (n==1) || (ispower(s=sigma(n), 6) && !(n % sqrtnint(s, 6))); \\ Michel Marcus, May 05 2018

A303999 Numbers whose sum of divisors is the seventh power of one of their divisors.

Original entry on oeis.org

1, 112890, 120054, 124338, 133998, 137058, 139962, 36705396, 39118548, 52166212, 4661585292, 4677211812, 4851457716, 4968055596, 6168611160, 6232929480, 6236525932, 6261521812, 6311227560, 6362855640, 6430524120, 6468862876, 6488003880, 6500134440, 6506266732
Offset: 1

Views

Author

Paolo P. Lava, May 04 2018

Keywords

Comments

Subset of A048257.

Examples

			Divisors of 112890 are 1, 2, 3, 5, 6, 10, 15, 30, 53, 71, 106, 142, 159, 213, 265, 318, 355, 426, 530, 710, 795, 1065, 1590, 2130, 3763, 7526, 11289, 18815, 22578, 37630, 56445, 112890 and their sum is 279936 = 6^7.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n;
    for n from 1 to q do a:=sort([op(divisors(n))]);
    for k from 1 to nops(a) do if sigma(n)=a[k]^7 then print(n); break; fi; od; od; end: P(10^9);
  • Mathematica
    Select[Range[150000], IntegerQ[t = DivisorSigma[1, #]^(1/7)] && Mod[#, t] == 0 &] (* Giovanni Resta, May 04 2018 *)
  • PARI
    isok(n) = (n==1) || (ispower(s=sigma(n), 7) && !(n % sqrtnint(s, 7))); \\ Michel Marcus, May 05 2018

Extensions

a(11)-a(25) from Giovanni Resta, May 04 2018

A304000 Numbers whose sum of divisors is the eighth power of one of their divisors.

Original entry on oeis.org

1, 600270, 621690, 669990, 685290, 693294, 699810, 725934, 774894, 782598, 813378, 823938, 839802, 508541124, 553420812, 678160756, 127444892484, 130213538364, 131470441284, 131515433868, 131523414204, 131528229924, 137156770884, 139602234324, 140161757484
Offset: 1

Views

Author

Paolo P. Lava, May 04 2018

Keywords

Comments

Subset of A048258.
If m and n are coprime members of the sequence, then m*n is in the sequence. However, it is not clear whether there are such m and n where neither is 1: in particular, are there odd members other than 1? - Robert Israel, May 10 2018

Examples

			Divisors of 600270 are 1, 2, 3, 5, 6, 10, 11, 15, 17, 22, 30, 33, 34, 51, 55, 66, 85, 102, 107, 110, 165, 170, 187, 214, 255, 321, 330, 374, 510, 535, 561, 642, 935, 1070, 1122, 1177, 1605, 1819, 1870, 2354, 2805, 3210, 3531, 3638, 5457, 5610, 5885, 7062, 9095, 10914, 11770, 17655, 18190, 20009, 27285, 35310, 40018, 54570, 60027, 100045, 120054, 200090, 300135, 600270 and their sum is 1679616 = 6^8.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n;
    for n from 1 to q do a:=sort([op(divisors(n))]);
    for k from 1 to nops(a) do if sigma(n)=a[k]^8 then print(n); break; fi; od; od; end: P(10^9);
  • PARI
    isok(n) = (n==1) || (ispower(s=sigma(n), 8) && !(n % sqrtnint(s, 8))); \\ Michel Marcus, May 05 2018

Extensions

a(17)-a(25) from Giovanni Resta, May 04 2018
Showing 1-6 of 6 results.