A303124 Expansion of Product_{n>=1} (1 + (16*x)^n)^(1/4).
1, 4, 40, 1504, 10336, 387968, 5349632, 111442944, 1100563968, 36711258112, 493805416448, 9186633203712, 134635599806464, 2648342619422720, 43443234834350080, 938422838970810368, 11378951438668791808, 224791017150689574912, 4129154423023897411584
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..500
Crossrefs
Programs
-
Mathematica
CoefficientList[Series[(QPochhammer[-1, 16*x]/2)^(1/4), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 19 2018 *)
-
PARI
N=66; x='x+O('x^N); Vec(prod(k=1, N, (1+(16*x)^k)^(1/4)))
Formula
a(n) ~ 2^(4*n - 17/8) * exp(sqrt(n/3)*Pi/2) / (3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Apr 19 2018
Comments