A303173 a(n) = [x^n] Product_{k=1..n} (1 - x^k)^(n-k+1).
1, -1, 0, 4, -7, 0, 13, 10, -92, 21, 720, -2019, 1193, 6281, -18054, 16111, 11059, -14653, -57685, -86620, 1281406, -3454742, 2383734, 9409968, -30397071, 43327680, -56130326, 128981571, -73487834, -1219918457, 5059678044, -7826243881, -4131571113, 38850603452
Offset: 0
Keywords
Examples
a(0) = 1; a(1) = [x^1] (1 - x) = -1; a(2) = [x^2] (1 - x)^2*(1 - x^2) = 0; a(3) = [x^3] (1 - x)^3*(1 - x^2)^2*(1 - x^3) = 4; a(4) = [x^4] (1 - x)^4*(1 - x^2)^3*(1 - x^3)^2*(1 - x^4) = -7; a(5) = [x^5] (1 - x)^5*(1 - x^2)^4*(1 - x^3)^3*(1 - x^4)^2*(1 - x^5) = 0, etc. ... The table of coefficients of x^k in expansion of Product_{k=1..n} (1 - x^k)^(n-k+1) begins: n = 0: (1), 0, 0, 0, 0, 0, ... n = 1: 1, (-1), 0, 0, 0, 0, ... n = 2: 1, -2, (0), 2, -1, 0, ... n = 3: 1, -3, 1, (4), -2, -2, ... n = 4: 1, -4, 3, 6, (-7), -2, ... n = 5: 1, -5, 6, 7, -16, (0), ...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..500
Programs
-
Mathematica
Table[SeriesCoefficient[Product[(1 - x^k)^(n - k + 1), {k, 1, n}], {x, 0, n}], {n, 0, 33}]