cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A179058 Number of non-attacking placements of 3 rooks on an n X n board.

Original entry on oeis.org

0, 0, 6, 96, 600, 2400, 7350, 18816, 42336, 86400, 163350, 290400, 490776, 794976, 1242150, 1881600, 2774400, 3995136, 5633766, 7797600, 10613400, 14229600, 18818646, 24579456, 31740000, 40560000, 51333750, 64393056, 80110296
Offset: 1

Views

Author

Thomas Zaslavsky, Jun 27 2010

Keywords

Comments

Also the number of 3-cycles in the n X n rook complement graph. - Eric W. Weisstein, Sep 05 2017
Also the number of 6-cycles in the complete tripartite graph K_{n,n,n}. - Eric W. Weisstein, Dec 07 2023
Essentially the same as A303212. - Eric W. Weisstein, Dec 06 2023

Crossrefs

Column k=3 of A144084.
Cf. A163102 (2 rooks), A179059 (4 rooks).
Cf. A291910 (4-cycles), A291911 (5-cycles), A291912 (6-cycles).

Programs

  • Mathematica
    (* Start from Eric W. Weisstein, Sep 05 2017 *)
    Table[3! Binomial[n, 3]^2, {n, 20}]
    3! Binomial[Range[20], 3]^2
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 6, 96, 600, 2400, 7350}, 20]
    CoefficientList[Series[-((6 x^2 (1 + 9 x + 9 x^2 + x^3))/(-1 + x)^7), {x, 0, 20}], x]
    (* End *)
    a[n_] := If[n<3, 0, Coefficient[n!*LaguerreL[n, x], x, n-3] // Abs];
    Array[a, 30] (* Jean-François Alcover, Jun 14 2018, after A144084 *)
  • PARI
    a(n) = 3!*binomial(n, 3)^2; \\ Andrew Howroyd, Feb 13 2018

Formula

a(n) = 3!*binomial(n, 3)^2.
a(n) = (n^2*(2-3*n+n^2)^2)/6. - Colin Barker, Jan 08 2013
G.f.: -6*x^3*(x+1)*(x^2+8*x+1) / (x-1)^7. - Colin Barker, Jan 08 2013
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Eric W. Weisstein, Sep 05 2017
From Amiram Eldar, Nov 02 2021: (Start)
Sum_{n>=3} 1/a(n) = 3*Pi^2/2 - 117/8.
Sum_{n>=3} (-1)^(n+1)/a(n) = 21/8 - Pi^2/4. (End)

A303209 Number of total dominating sets in the n X n rook complement graph.

Original entry on oeis.org

0, 1, 334, 63935, 33543096, 68719407273, 562949953031502, 18446744073707484655, 2417851639229258338871776, 1267650600228229401496650964865, 2658455991569831745807614120307390270, 22300745198530623141535718272648360299110799
Offset: 1

Views

Author

Eric W. Weisstein, Apr 19 2018

Keywords

Comments

The vertex sets which are not totally dominating are just those that are contained in the union of a single row and column. - Andrew Howroyd, Apr 20 2018

Crossrefs

Programs

  • PARI
    a(n) = {2^(n^2) - 2*n*(2^n - 1) - 2*n^2*(2^(n-1)-1)^2 + n^2*(n-1)^2/2 + n^2 - 1} \\ Andrew Howroyd, Apr 20 2018

Formula

a(n) = 2^(n^2) - 2*n*(2^n - 1) - 2*n^2*(2^(n-1)-1)^2 + n^2*(n-1)^2/2 + n^2 - 1. - Andrew Howroyd, Apr 20 2018

Extensions

Terms a(6) and beyond from Andrew Howroyd, Apr 20 2018

A347922 Number of minimal total dominating sets in the n X n rook complement graph.

Original entry on oeis.org

0, 1, 51, 492, 2500, 8925, 25431, 61936, 134352, 266625, 493075, 861036, 1433796, 2293837, 3546375, 5323200, 7786816, 11134881, 15604947, 21479500, 29091300, 38829021, 51143191, 66552432, 85650000, 109110625, 137697651, 172270476, 213792292, 263338125
Offset: 1

Views

Author

Eric W. Weisstein, Sep 19 2021

Keywords

Comments

From Andrew Howroyd, Jan 19 2022: (Start)
The vertex sets which are not totally dominating are just those that are contained in the union of a single row and column. Minimal total dominating sets are:
- any three vertices such that no two are in the same row or column,
- two vertices in each of two rows/columns. (End)

Crossrefs

Programs

  • Mathematica
    Table[(n - 1)^2 n^2 (5 n^2 - 11 n + 5)/12, {n, 20}] (* Eric W. Weisstein, May 11 2024 *)
    LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 1, 51, 492, 2500, 8925, 25431}, 20] (* Eric W. Weisstein, May 11 2024 *)
    CoefficientList[Series[-x (1 + 44 x + 156 x^2 + 92 x^3 + 7 x^4)/(-1 + x)^7, {x, 0, 20}], x] (* Eric W. Weisstein, May 11 2024 *)
  • PARI
    a(n) = (5*n^2 - 11*n + 5)*n^2*(n-1)^2/12 \\ Andrew Howroyd, Jan 19 2022

Formula

From Andrew Howroyd, Jan 19 2022: (Start)
a(n) = 6*binomial(n,3)^2 + 2*binomial(n,2)^3 - binomial(n,2)^2.
a(n) = (5*n^2 - 11*n + 5)*n^2*(n-1)^2/12.
G.f.: x*(1 + 44*x + 156*x^2 + 92*x^3 + 7*x^4)/(1 - x)^7.
(End)

Extensions

Terms a(6) and beyond from Andrew Howroyd, Jan 19 2022
Showing 1-3 of 3 results.