cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303222 Total volume of all rectangular prisms with dimensions p, q and (p + q)/2 such that p and q are squarefree, n = p + q and p <= q.

Original entry on oeis.org

0, 1, 3, 14, 15, 42, 56, 136, 144, 230, 220, 612, 611, 665, 675, 1576, 1768, 1836, 1729, 4200, 3528, 4279, 3404, 7524, 6625, 8333, 8289, 14336, 11165, 12675, 10323, 20592, 17688, 23307, 17570, 40410, 27861, 30153, 28899, 52180, 42804, 45864, 55169, 84920
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 19 2018

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [&+[k*(n-k)*(MoebiusMu(k)^2*MoebiusMu(n-k)^2)*n/2: k in [1..Floor(n/2)]]: n in [2..60]]; // Vincenzo Librandi, Apr 21 2018
    
  • Maple
    N:= 100: # for a(1)..a(N)
    A:= Vector(N):
    SF:= select(numtheory:-issqrfree, [$1..N-1]):
    for iq from 1 to nops(SF) do
      q:= SF[iq];
      for ip from 1 to iq do
        p:= SF[ip];
        n:= p+q;
        if n > N then break fi;
        A[n]:= A[n] + p*q*(p+q)/2
      od
    od:
    convert(A,list); # Robert Israel, Jun 12 2018
  • Mathematica
    Table[(n/2)*Sum[i (n - i)*MoebiusMu[i]^2 MoebiusMu[n - i]^2, {i, Floor[n/2]}], {n, 80}]
  • PARI
    a(n) = n*sum(i=1, n\2, i*(n-i)*moebius(i)^2*moebius(n-i)^2)/2; \\ Michel Marcus, Apr 21 2018

Formula

a(n) = (n/2) * Sum_{i=1..floor(n/2)} i * (n-i) * mu(i)^2 * mu(n-i)^2, where mu is the Möbius function (A008683).