A303277 If n = Product (p_j^k_j) then a(n) = (Sum (k_j))^(Sum (p_j)).
1, 1, 1, 4, 1, 32, 1, 9, 8, 128, 1, 243, 1, 512, 256, 16, 1, 243, 1, 2187, 1024, 8192, 1, 1024, 32, 32768, 27, 19683, 1, 59049, 1, 25, 16384, 524288, 4096, 1024, 1, 2097152, 65536, 16384, 1, 531441, 1, 1594323, 6561, 33554432, 1, 3125, 128, 2187, 1048576, 14348907, 1, 1024, 65536
Offset: 1
Keywords
Examples
a(48) = a(2^4 * 3^1) = (4 + 1)^(2 + 3) = 5^5 = 3125.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..4096
Crossrefs
Programs
-
Mathematica
Join[{1}, Table[PrimeOmega[n]^DivisorSum[n, # &, PrimeQ[#] &], {n, 2, 55}]]
-
PARI
a(n) = my(f=factor(n)); vecsum(f[,2])^vecsum(f[,1]); \\ Michel Marcus, Apr 21 2018