A303551 Number of aperiodic multisets of compositions of total weight n.
1, 2, 6, 15, 41, 95, 243, 567, 1366, 3189, 7532, 17428, 40590, 93465, 215331, 493150, 1127978, 2569049, 5841442, 13240351, 29953601, 67596500, 152258270, 342235866, 767895382, 1719813753, 3845442485, 8584197657, 19133459138, 42583565928, 94641591888
Offset: 1
Keywords
Examples
The a(4) = 15 aperiodic multisets of compositions are: {4}, {31}, {22}, {211}, {13}, {121}, {112}, {1111}, {1,3}, {1,21}, {1,12}, {1,111}, {2,11}, {1,1,2}, {1,1,11}. Missing from this list are {1,1,1,1}, {2,2}, and {11,11}.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Maple
with(numtheory): b:= proc(n) option remember; `if`(n=0, 1, add(add( d*2^(d-1), d=divisors(j))*b(n-j), j=1..n)/n) end: a:= n-> add(mobius(d)*b(n/d), d=divisors(n)): seq(a(n), n=1..35); # Alois P. Heinz, Apr 26 2018
-
Mathematica
nn=20; ser=Product[1/(1-x^n)^2^(n-1),{n,nn}] Table[Sum[MoebiusMu[d]*SeriesCoefficient[ser,{x,0,n/d}],{d,Divisors[n]}],{n,1,nn}]
-
PARI
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)} seq(n)={my(u=EulerT(vector(n, n, 2^(n-1)))); vector(n, n, sumdiv(n, d, moebius(d)*u[n/d]))} \\ Andrew Howroyd, Sep 15 2018
Formula
a(n) = Sum_{d|n} mu(d) * A034691(n/d).
Comments