cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303551 Number of aperiodic multisets of compositions of total weight n.

Original entry on oeis.org

1, 2, 6, 15, 41, 95, 243, 567, 1366, 3189, 7532, 17428, 40590, 93465, 215331, 493150, 1127978, 2569049, 5841442, 13240351, 29953601, 67596500, 152258270, 342235866, 767895382, 1719813753, 3845442485, 8584197657, 19133459138, 42583565928, 94641591888
Offset: 1

Views

Author

Gus Wiseman, Apr 26 2018

Keywords

Comments

A multiset is aperiodic if its multiplicities are relatively prime.

Examples

			The a(4) = 15 aperiodic multisets of compositions are:
{4}, {31}, {22}, {211}, {13}, {121}, {112}, {1111},
{1,3}, {1,21}, {1,12}, {1,111}, {2,11},
{1,1,2}, {1,1,11}.
Missing from this list are {1,1,1,1}, {2,2}, and {11,11}.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
          d*2^(d-1), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= n-> add(mobius(d)*b(n/d), d=divisors(n)):
    seq(a(n), n=1..35);  # Alois P. Heinz, Apr 26 2018
  • Mathematica
    nn=20;
    ser=Product[1/(1-x^n)^2^(n-1),{n,nn}]
    Table[Sum[MoebiusMu[d]*SeriesCoefficient[ser,{x,0,n/d}],{d,Divisors[n]}],{n,1,nn}]
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    seq(n)={my(u=EulerT(vector(n, n, 2^(n-1)))); vector(n, n, sumdiv(n, d, moebius(d)*u[n/d]))} \\ Andrew Howroyd, Sep 15 2018

Formula

a(n) = Sum_{d|n} mu(d) * A034691(n/d).