A303600 a(1)=2 and a(2)=3, then a(n+1) is the smallest integer larger than a(n) that can be written as the sum of two (not necessarily distinct) earlier terms in exactly one way.
2, 3, 4, 5, 9, 10, 11, 16, 22, 24, 28, 29, 30, 37, 42, 50, 55, 56, 70, 73, 76, 82, 89, 95, 101, 102, 115, 128, 133, 135, 136, 141, 142, 153, 160, 161, 168, 174, 181, 195, 199, 200, 214, 221, 227, 233, 247, 252, 265, 266, 267, 273, 280, 285, 286, 325, 331, 332, 338
Offset: 1
Keywords
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (Terms 1..100 from David Consiglio, Jr.)
- David A. Corneth, PARI-prog
- Borys Kuca, Structures in Additive Sequences, arXiv:1804.09594 [math.NT], 2018. See V(2,3).
Crossrefs
Cf. A004280 (with first terms 1 and 2).
Programs
-
Mathematica
Nest[Append[#, Function[{m, s}, First@ SelectFirst[Tally[s], And[First@ # > m, Last@ # < 3] &]] @@ {Max@ #, Sort[Total /@ Tuples[#, {2}]]}] &, {2, 3}, 57] (* Michael De Vlieger, Apr 27 2018 *)
-
PARI
\\ See PARI link \\ David A. Corneth, Apr 27 2018
-
Python
terms = [2,3] while len(terms) < 100: options = [] for x in range(len(terms)): for y in range(x,len(terms)): options.append(terms[x]+terms[y]) for y in sorted(options): if options.count(y) == 1 and y > max(terms): terms.append(y) break print(terms) # David Consiglio, Jr., Apr 18 2018
-
Python
from collections import Counter def A303600_list(num_terms): terms = [2, 3] sum_counts = Counter([4, 5, 6]) next_term = 3 for n in range(2, num_terms): next_term += 1 while sum_counts[next_term] != 1: next_term += 1 terms.append(next_term) for term in terms: sum_counts[term + next_term] += 1 return terms print(A303600_list(59)) # David Radcliffe, Jun 19 2025
Extensions
More terms from David Consiglio, Jr., Apr 26 2018