A303667 Expansion of 2/((1 - x)*(3 - theta_3(x))), where theta_3() is the Jacobi theta function.
1, 2, 3, 4, 6, 9, 13, 18, 25, 36, 52, 74, 104, 147, 209, 297, 421, 596, 845, 1199, 1701, 2411, 3417, 4844, 6868, 9738, 13806, 19573, 27749, 39342, 55778, 79079, 112112, 158944, 225342, 319479, 452941, 642152, 910404, 1290719, 1829911, 2594344, 3678108, 5214606, 7392970, 10481335
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000
- Eric Weisstein's World of Mathematics, Jacobi Theta Functions
- Index entries for sequences related to compositions
- Index entries for sequences related to sums of squares
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-i^2), i=1..isqrt(n))) end: a:= proc(n) option remember; `if`(n<0, 0, b(n)+a(n-1)) end: seq(a(n), n=0..50); # Alois P. Heinz, Apr 28 2018
-
Mathematica
nmax = 45; CoefficientList[Series[2/((1 - x) (3 - EllipticTheta[3, 0, x])), {x, 0, nmax}], x] nmax = 45; CoefficientList[Series[1/((1 - x) (1 - Sum[x^k^2, {k, 1, nmax}])), {x, 0, nmax}], x] a[0] = 1; a[n_] := a[n] = Sum[Boole[IntegerQ[k^(1/2)]] a[n - k], {k, 1, n}]; Accumulate[Table[a[n], {n, 0, 45}]]
Formula
G.f.: 1/((1 - x)*(1 - Sum_{k>=1} x^(k^2))).
Comments