A303759 Number of times the largest prime power factor of n (A034699) is largest prime power factor for numbers <= n; a(1) = 1.
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 4, 3, 2, 1, 2, 1, 2, 1, 4, 1, 5, 1, 1, 3, 2, 5, 3, 1, 2, 3, 3, 1, 6, 1, 4, 4, 2, 1, 2, 1, 2, 3, 4, 1, 2, 5, 4, 3, 2, 1, 6, 1, 2, 5, 1, 5, 6, 1, 4, 3, 7, 1, 6, 1, 2, 3, 4, 7, 6, 1, 3, 1, 2, 1, 8, 5, 2, 3, 8, 1, 7, 7, 4, 3, 2, 5, 2, 1, 2, 9, 4, 1, 6, 1, 8, 9
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Programs
-
Maple
b:= proc() 0 end: a:= proc(n) option remember; local t; t:= max(1, seq(i[1]^i[2], i=ifactors(n)[2])); b(t):= b(t)+1 end: seq(a(n), n=1..120); # Alois P. Heinz, Apr 30 2018
-
Mathematica
f[n_] := Max[Power @@@ FactorInteger[n]]; b[_] = 0; a[n_] := With[{t = f[n]}, b[t] = b[t]+1]; Array[a, 105] (* Jean-François Alcover, Jan 03 2022 *)
-
PARI
up_to = 65537; ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; A034699(n) = if(1==n,n,fordiv(n, d, if(isprimepower(n/d), return(n/d)))); v303759 = ordinal_transform(vector(up_to,n,A034699(n))); A303759(n) = v303759[n];
Comments