A303824 Number of ways of writing n as a sum of powers of 6, each power being used at most six times.
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 2, 2, 2, 2, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 2, 2, 2, 2, 2, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0, add(b(n-j*6^i, i-1), j=0..min(6, n/6^i)))) end: a:= n-> b(n, ilog[6](n)): seq(a(n), n=0..120); # Alois P. Heinz, May 01 2018
-
Mathematica
m = 100; A[_] = 1; Do[A[x_] = Total[x^Range[0, 6]] A[x^6] + O[x]^m // Normal, {m}]; CoefficientList[A[x], x] (* Jean-François Alcover, Oct 19 2019 *)
-
Ruby
def A(k, n) ary = [1] (1..n).each{|i| s = ary[i / k] s += ary[i / k - 1] if i % k == 0 ary << s } ary end p A(6, 100)
Formula
G.f.: Product_{k>=0} (1-x^(7*6^k))/(1-x^(6^k)).
a(0)=1; for k>0, a(6*k) = a(k)+a(k-1) and a(6*k+r) = a(k) with r=1,2,3,4,5.
G.f. A(x) satisfies: A(x) = (1 + x + x^2 + x^3 + x^4 + x^5 + x^6) * A(x^6). - Ilya Gutkovskiy, Jul 09 2019