cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303909 Expansion of 2*(1 - x)/(3 - theta_3(x)), where theta_3() is the Jacobi theta function.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 2, 4, 5, 6, 8, 13, 19, 26, 36, 51, 74, 105, 148, 208, 296, 421, 597, 846, 1198, 1699, 2409, 3417, 4843, 6865, 9732, 13799, 19566, 27739, 39325, 55749, 79041, 112063, 158877, 225241, 319331, 452734, 641866, 910001, 1290137, 1829079, 2593169, 3676457, 5212266
Offset: 0

Views

Author

Ilya Gutkovskiy, May 02 2018

Keywords

Comments

First differences of A006456.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<0, 0,
          `if`(n=0, 1, add(b(n-j^2), j=1..isqrt(n))))
        end:
    a:= n-> b(n)-`if`(n=0, 0, b(n-1)):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 02 2018
  • Mathematica
    nmax = 50; CoefficientList[Series[2 (1 - x)/(3 - EllipticTheta[3, 0, x]), {x, 0, nmax}], x]
    nmax = 50; CoefficientList[Series[(1 - x)/(1 - Sum[x^k^2, {k, 1, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[Boole[IntegerQ[k^(1/2)]] a[n - k], {k, 1, n}]; Differences[Table[a[n], {n, -1, 50}]]

Formula

G.f.: (1 - x)/(1 - Sum_{k>=1} x^(k^2)).