A303909 Expansion of 2*(1 - x)/(3 - theta_3(x)), where theta_3() is the Jacobi theta function.
1, 0, 0, 0, 1, 1, 1, 1, 2, 4, 5, 6, 8, 13, 19, 26, 36, 51, 74, 105, 148, 208, 296, 421, 597, 846, 1198, 1699, 2409, 3417, 4843, 6865, 9732, 13799, 19566, 27739, 39325, 55749, 79041, 112063, 158877, 225241, 319331, 452734, 641866, 910001, 1290137, 1829079, 2593169, 3676457, 5212266
Offset: 0
Keywords
Links
- Eric Weisstein's World of Mathematics, Jacobi Theta Functions
- Index entries for sequences related to compositions
- Index entries for sequences related to sums of squares
Programs
-
Maple
b:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1, add(b(n-j^2), j=1..isqrt(n)))) end: a:= n-> b(n)-`if`(n=0, 0, b(n-1)): seq(a(n), n=0..60); # Alois P. Heinz, May 02 2018
-
Mathematica
nmax = 50; CoefficientList[Series[2 (1 - x)/(3 - EllipticTheta[3, 0, x]), {x, 0, nmax}], x] nmax = 50; CoefficientList[Series[(1 - x)/(1 - Sum[x^k^2, {k, 1, nmax}]), {x, 0, nmax}], x] a[0] = 1; a[n_] := a[n] = Sum[Boole[IntegerQ[k^(1/2)]] a[n - k], {k, 1, n}]; Differences[Table[a[n], {n, -1, 50}]]
Formula
G.f.: (1 - x)/(1 - Sum_{k>=1} x^(k^2)).
Comments