cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A303500 The smallest positive even integer that can be written with n digits in base 3/2.

Original entry on oeis.org

2, 21, 210, 2101, 21011, 210110, 2101100, 21011000, 210110001, 2101100011, 21011000110, 210110001101, 2101100011010, 21011000110100, 210110001101001, 2101100011010011, 21011000110100110, 210110001101001101
Offset: 0

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, May 09 2018

Keywords

Comments

a(n) is a prefix of a(n+1).
The smallest, not necessarily even, integer in base 3/2 with n digits is a(n-1) with 0 added at the end.

Examples

			The number 5 in base 3/2 is 22, and the number 6 is 210. Therefore, 210 is the smallest even integer with 3 digits in base 3/2.
		

Crossrefs

See A024629 for the base-3/2 expansion of n.

Programs

  • Maple
    roll32 := proc(L)
        local piv,L1 ;
        piv := 1;
        L1 := subsop(piv=op(piv,L)+1,L) ;
        while op(piv,L1) >= 3 do
            L1 := [seq(0,i=1..piv), op(piv+1,L1)+1, seq(op(i,L1),i=piv+2..nops(L1))] ;
            piv := piv+1 ;
        end do:
        L1 ;
    end proc:
    from32 := proc(L)
        add( op(i,L)*(3/2)^(i-1),i=1..nops(L)) ;
    end proc:
    A303500 := proc(n)
        local dgs ;
        dgs := [seq(0,i=1..n-1),1] ;
        while not type(from32(dgs),'even') do
            dgs := roll32(dgs) ;
        end do:
        dgs := ListTools[Reverse](dgs) ;
        digcatL(%) ;
    end proc: # R. J. Mathar, Jun 25 2018

Formula

a(n) = A024629(A305498(n)). - R. J. Mathar, Jun 25 2018

A304024 a(n) is the largest integer with n digits in base 3/2.

Original entry on oeis.org

2, 22, 212, 2122, 21222, 212212, 2122112, 21221112, 212211122, 2122111222, 21221112212, 212211122122, 2122111221212, 21221112212112, 212211122121122, 2122111221211222, 21221112212112212, 212211122121122122
Offset: 0

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, May 04 2018

Keywords

Comments

Every number starts and ends with 2 and contains only twos and ones.
Removing the last digit produces sequence A304272 of the largest even integers in base 3/2.
The value of this sequence in base 10 is A304025.
When adding 1 to the value of this sequence we get A070885.
The largest integer with a given number of digits in base 3/2 can be produced directly from the smallest number, sequence A304023, by replacing 21 at the beginning and 0 at the end with 2, and by shifting the rest up by 1, see sequence A304023.

Examples

			The number 5 in base 3/2 is 22, and the number 6 is 210. Therefore, 22 is the largest two-digit integer.
		

Crossrefs

Programs

  • PARI
    first(n) = {my(res=vector(n), c = 2); res[1]=2; for(i=2, n, res[i] = 10 * res[i-1] + 2; if(c % 2 == 1, res[i] -= 10); c = 3 * c / 2 + if(c%2==0, 2, 1/2)); res} \\ David A. Corneth, May 11 2018

Formula

a(1) = 2, for n > 1, a(n) = 10 * a(n - 1) + 2 if A304025(n - 1) is even. Otherwise, a(n) = 10 * a(n - 1) - 8. - David A. Corneth, May 11 2018

A304272 The largest even integer that can be written with n digits in base 3/2.

Original entry on oeis.org

2, 21, 212, 2122, 21221, 212211, 2122111, 21221112, 212211122, 2122111221, 21221112212, 212211122121, 2122111221211, 21221112212112, 212211122121122, 2122111221211221, 21221112212112212, 212211122121122121, 2122111221211221212, 21221112212112212121, 212211122121122121211, 2122111221211221212112
Offset: 1

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, May 09 2018

Keywords

Comments

a(n) is a prefix of a(n+1).
The largest, not necessarily even, integer in base 3/2 with n digits is a(n-1) with 2 added at the end.

Examples

			The number 4 in base 3/2 is 21, and number 6 is 210. Therefore, 21 is the largest even integer with 2 digits in base 3/2.
		

Crossrefs

Programs

  • Mathematica
    Table[StringTake["212211122121122121211221211212112", n], {n, 32}]

A304273 The concatenation of the first n terms is the smallest positive even number with n digits when written in base 3/2 (cf. A024629).

Original entry on oeis.org

2, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0
Offset: 1

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, May 09 2018

Keywords

Comments

This sequence exists since the smallest even integers (see A303500) are prefixes of each other.
Apparently a variant of A205083. - R. J. Mathar, Jun 09 2018

Examples

			The number 5 in base 3/2 is 22, and the number 6 is 210. Therefore 210 is the smallest even integer with 3 digits in base 3/2. Its prefix 21 is 4: the smallest even integer with 2 digits in base 3/2.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<2, 2*n,
          (t-> t+irem(t, 2))(b(n-1)*3/2))
        end:
    a:= n-> b(n)-3/2*b(n-1):
    seq(a(n), n=1..105);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    b[n_] := b[n] = If[n < 2, 2*n, Function[t, t + Mod[t, 2]][3/2 b[n - 1]]]; a[n_] := b[n] - 3/2 b[n - 1]; Table[a[n], {n, 1, 105}] (* Robert P. P. McKone, Feb 12 2021 *)

Formula

For n>1, a(n) = A304274(n-1) - 1.

Extensions

More terms from Alois P. Heinz, Jun 21 2018

A304023 a(n) is the smallest integer with n digits in base 3/2 expressed in base 3/2.

Original entry on oeis.org

0, 20, 210, 2100, 21010, 210110, 2101100, 21011000, 210110000, 2101100010, 21011000110, 210110001100, 2101100011010, 21011000110100, 210110001101000, 2101100011010010, 21011000110100110, 210110001101001100, 2101100011010011010, 21011000110100110100, 210110001101001101010
Offset: 1

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, May 04 2018

Keywords

Comments

Excluding 0, every term starts with 2 and has exactly one 2.
The last digit is always zero.
Removing the last digit produces the sequence A303500 of the smallest even integers in base 3/2.
The value of this sequence in base 10 is A070885.
When subtracting 1 from the value of this sequence we get A304025.
The largest integer with a given number of digits in base 3/2 can be produced directly from this sequence by replacing 21 at the beginning and 0 at the end with 2, and by shifting the rest up by 1, see sequence A304024.

Examples

			The number 5 in base 3/2 is 22, and the number 6 is 210. Therefore, 210 is the smallest three-digit integer.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) b(n):= `if`(n=1, 1, 3*ceil(b(n-1)/2)) end:
    g:= proc(n) g(n):= `if`(n<2, 0, irem(n, 3, 'q')+g(2*q)*10) end:
    a:= n-> g(b(n)):
    seq(a(n), n=1..30);  # Alois P. Heinz, Feb 13 2021
  • PARI
    f(n) = if( n<1, 0, f(n\3 * 2) * 10 + n%3);
    a(n) = {my(k=0); while(#Str(f(k)) != n, k++); f(k);} \\ Michel Marcus, Jun 19 2018
  • Python
    def f(n): return 0 if n < 1 else f(n//3*2)*10 + n%3
    def a(n):
      k = 0
      while len(str(f(k))) != n: k += 1
      return f(k)
    print([a(n) for n in range(1, 22)]) # Michael S. Branicky, Feb 12 2021 after Michel Marcus
    

Formula

a(n) = A024629(A070885(n)). - Michel Marcus, Jun 19 2018

Extensions

More terms from Michel Marcus, Jun 19 2018

A304274 The concatenation of the first n elements is the largest positive even number with n digits when written in base 3/2.

Original entry on oeis.org

2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 2
Offset: 1

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, May 09 2018

Keywords

Comments

This sequence is possible due to the fact that the largest even integers are prefixes of each other.
A304272(n) is the largest even integer with n digits.

Examples

			Number 8 in base 3/2 is 212, and it is the largest even integer with 3 digits in base 3/2. Its prefix 21 is 4: the largest even integer with 2 digits in base 3/2.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=1, 2,
          (t-> t+irem(t, 2))(b(n-1)*3/2))
        end:
    a:= n-> b(n+1)-3/2*b(n)+1:
    seq(a(n), n=1..120);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    b[n_] := b[n] = If[n == 1, 2, Function[t, t + Mod[t, 2]][3/2 b[n-1]]];
    a[n_] := b[n+1] - 3/2 b[n] + 1;
    Array[a, 120] (* Jean-François Alcover, Dec 13 2018, after Alois P. Heinz *)

Formula

a(n) = A304273(n+1) + 1.
From Alois P. Heinz, Jun 21 2018: (Start)
a(n) = A305498(n+1) -3/2*A305498(n) + 1.
Sum_{i=0..n-1} (3/2)^i*a(n-i) = A305497(n). (End)

Extensions

More terms from Alois P. Heinz, Jun 21 2018

A305497 The largest positive even integer that can be represented with n digits in base 3/2.

Original entry on oeis.org

2, 4, 8, 14, 22, 34, 52, 80, 122, 184, 278, 418, 628, 944, 1418, 2128, 3194, 4792, 7190, 10786, 16180, 24272, 36410, 54616, 81926, 122890, 184336, 276506, 414760, 622142, 933214, 1399822, 2099734, 3149602, 4724404, 7086608, 10629914, 15944872, 23917310
Offset: 1

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, Jun 02 2018

Keywords

Crossrefs

Programs

  • Mathematica
    b[n_] := b[n] = If[n == 1, 2, Function[t, t + Mod[t, 2]][3/2 b[n - 1]]]; a[n_] := b[n + 1] - 3/2 b[n] + 1; A305497[n_] := Sum[(3/2)^i*a[n - i], {i, 0, n - 1}]; Table[A305497[n], {n, 1, 39}] (* Robert P. P. McKone, Feb 12 2021 *)
  • Python
    from itertools import islice
    def A305497_gen(): # generator of terms
        a = 2
        while True:
            a += a>>1
            yield (a<<1)-4
    A305497_list = list(islice(A305497_gen(),70)) # Chai Wah Wu, Sep 20 2022

Formula

a(n+1) = 2*floor(3*a(n)/4) + 2.
a(n) = 2*A061419(n+1) - 2.
a(n) = A305498(n+1) - 2.
a(n) = Sum_{i=0..n-1} (3/2)^i*A304274(n-i). - Alois P. Heinz, Jun 21 2018

A305498 The smallest positive even integer that can be represented with n digits in base 3/2.

Original entry on oeis.org

2, 4, 6, 10, 16, 24, 36, 54, 82, 124, 186, 280, 420, 630, 946, 1420, 2130, 3196, 4794, 7192, 10788, 16182, 24274, 36412, 54618, 81928, 122892, 184338, 276508, 414762, 622144, 933216, 1399824, 2099736, 3149604, 4724406, 7086610, 10629916, 15944874, 23917312
Offset: 1

Views

Author

Tanya Khovanova and PRIMES STEP Senior group, Jun 02 2018

Keywords

Crossrefs

Programs

  • Python
    from itertools import islice
    def A305498_gen(): # generator of terms
        a = 2
        while True:
            yield (a<<1)-2
            a += a>>1
    A305498_list = list(islice(A305498_gen(),70)) # Chai Wah Wu, Sep 20 2022

Formula

a(n+1) = 2*ceiling(3*a(n)/4).
a(n) = 2*A061419(n).
a(n) = A305497(n-1) + 2.
Showing 1-8 of 8 results.