cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304042 Triangle read by rows: T(n,k) is the denominator of R(n,k) defined implicitly by the identity Sum_{i=0..l-1} Sum_{j=0..m} R(m,j)*(l-i)^j*i^j = l^(2*m+1) holding for all l,m >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Kolosov Petro, May 05 2018

Keywords

Examples

			Triangle begins:
-----------------------------------------------------
k=    0  1  2  3  4  5  6  7  8  9  10 11 12 13 14 15
-----------------------------------------------------
n=0:  1;
n=1:  1, 1;
n=2:  1, 1, 1;
n=3:  1, 1, 1, 1;
n=4:  1, 1, 1, 1, 1;
n=5:  1, 1, 1, 1, 1, 1;
n=6:  1, 1, 1, 1, 1, 1, 1;
n=7:  1, 1, 1, 1, 1, 1, 1, 1;
n=8:  1, 1, 1, 1, 1, 1, 1, 1, 1;
n=9:  1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
n=10: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
n=11: 1, 5, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1;
n=12: 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1;
n=13: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
n=14: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
n=15: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
		

Crossrefs

Programs

  • Mathematica
    R[n_, k_] := 0
    R[n_, k_] := (2 k + 1)*Binomial[2 k, k]*
       Sum[R[n, j]*Binomial[j, 2 k + 1]*(-1)^(j - 1)/(j - k)*
       BernoulliB[2 j - 2 k], {j, 2 k + 1, n}] /; 2 k + 1 <= n
    R[n_, k_] := (2 n + 1)*Binomial[2 n, n] /; k == n;
    T[n_, k_] := Denominator[R[n, k]];
    (* Print Fifteen Initial rows of Triangle A304042 *)
    Column[ Table[ T[n, k], {n, 0, 15}, {k, 0, n}], Center]
  • PARI
    up_to = 1274; \\ = binomial(50+1,2)-1
    A304042aux(n, k) = if((k<0)||(k>n),0,(k+k+1)*binomial(2*k, k)*if(k==n,1,sum(j=k+k+1,n, A304042aux(n, j)*binomial(j, k+k+1)*((-1)^(j-1))/(j-k)*bernfrac(2*(j-k)))));
    A304042tr(n, k) = denominator(A304042aux(n, k));
    A304042list(up_to) = { my(v = vector(up_to), i=0); for(n=0,oo, for(k=0,n, if(i++ > up_to, return(v)); v[i] = A304042tr(n,k))); (v); };
    v304042 = A304042list(1+up_to);
    A304042(n) = v304042[1+n]; \\ Antti Karttunen, Nov 07 2018

Formula

Recurrence given by Max Alekseyev (see the MathOverflow link):
R(n, k) = 0 if k < 0 or k > n.
R(n, k) = (2k+1)*binomial(2k, k) if k = n.
R(n, k) = (2k+1)*binomial(2k, k)*Sum_{j=2k+1..n} R(n, j)*binomial(j, 2k+1)*(-1)^(j-1)/(j-k)*Bernoulli(2j-2k), otherwise.
T(n, k) = denominator(R(n, k)).