A316349
Consider coefficients U(m,L,k) defined by the identity Sum_{k=1..L} Sum_{j=0..m} A302971(m,j)/A304042(m,j) * k^j * (T-k)^j = Sum_{k=0..m} (-1)^(m-k) * U(m,L,k) * T^k that holds for all positive integers L,m,T. This sequence gives 3-column table read by rows, where the n-th row lists coefficients U(2,n,k) for k = 0, 1, 2; n >= 1.
Original entry on oeis.org
31, 60, 30, 512, 540, 150, 2943, 2160, 420, 10624, 6000, 900, 29375, 13500, 1650, 68256, 26460, 2730, 140287, 47040, 4200, 263168, 77760, 6120, 459999, 121500, 8550, 760000, 181500, 11550, 1199231, 261360, 15180, 1821312, 365040, 19500, 2678143, 496860, 24570, 3830624, 661500, 30450
Offset: 1
column column column
L k=0 k=1 k=2
-- ------- ------- ------
1 31 60 30
2 512 540 150
3 2943 2160 420
4 10624 6000 900
5 29375 13500 1650
6 68256 26460 2730
7 140287 47040 4200
8 263168 77760 6120
9 459999 121500 8550
10 760000 181500 11550
11 1199231 261360 15180
12 1821312 365040 19500
...
- Max Alekseyev, Derivation of the general formula for U(m,n,k), MathOverflow, 2018.
- Petro Kolosov, On the link between binomial theorem and discrete convolution, arXiv:1603.02468 [math.NT], 2016-2025.
- Petro Kolosov, More details on derivation of present sequence.
- Petro Kolosov, Mathematica program, verifies the identity T^(2m+1) = Sum_{k=0..m} (-1)^(m-k)*U(m,T,k)*T^k for m=0,1,...,12.
- Petro Kolosov, History and overview of the polynomial P_b^m(x), 2024.
- Petro Kolosov, An efficient method of spline approximation for power function, arXiv:2503.07618 [math.GM], 2025.
-
(* Define the R[n,k] := A302971(m,j)/A304042(m,j) *)
R[n_, k_] := 0
R[n_, k_] := (2 k + 1)*Binomial[2 k, k]*
Sum[R[n, j]*Binomial[j, 2 k + 1]*(-1)^(j - 1)/(j - k)*
BernoulliB[2 j - 2 k], {j, 2 k + 1, n}] /; 2 k + 1 <= n
R[n_, k_] := (2 n + 1)*Binomial[2 n, n] /; k == n;
(* Define the U(m,l,t) coefficients *)
U[m_, l_, t_] := (-1)^m Sum[Sum[Binomial[j, t] R[m,j] k^(2 j - t) (-1)^j, {j, t, m}], {k, 1, l}];
(* Define the value of the variable 'm', should be m = 2 for A316349 *)
m = 2;
(* Print first 10 rows of U(m,l,t) coefficients over l: 1 <= l <= 10 *)
Column[Table[U[m, l, t], {l, 1, 10}, {t, 0, m}]]
A316387
Consider coefficients U(m,L,k) defined by the identity Sum_{k=1..L} Sum_{j=0..m} A302971(m,j)/A304042(m,j) * k^j * (T-k)^j = Sum_{k=0..m} (-1)^(m-k) * U(m,L,k) * T^k that holds for all positive integers L,m,T. This sequence gives 4-column table read by rows, where the n-th row lists coefficients U(3,n,k) for k = 0, 1, 2, 3; n >= 1.
Original entry on oeis.org
125, 406, 420, 140, 9028, 13818, 7140, 1260, 110961, 115836, 41160, 5040, 684176, 545860, 148680, 14000, 2871325, 1858290, 411180, 31500, 9402660, 5124126, 955500, 61740, 25872833, 12182968, 1963920, 109760, 62572096, 25945416, 3684240, 181440, 136972701, 50745870, 6439860, 283500, 276971300, 92745730, 10639860, 423500
Offset: 1
column column column column
L k=0 k=1 k=2 k=3
-- ------------ ---------- ---------- -------
1 125 406 420 140
2 9028 13818 7140 1260
3 110961 115836 41160 5040
4 684176 545860 148680 14000
5 2871325 1858290 411180 31500
6 9402660 5124126 955500 61740
7 25872833 12182968 1963920 109760
8 62572096 25945416 3684240 181440
9 136972701 50745870 6439860 283500
10 276971300 92745730 10639860 423500
11 524988145 160386996 16789080 609840
12 943023888 264896268 25498200 851760
13 1618774781 420839146 37493820 1159340
14 2672907076 646725030 53628540 1543500
15 4267591425 965662320 74891040 2016000
16 6616398080 1406064016 102416160 2589440
17 9995653693 2002403718 137494980 3277260
18 14757360516 2796022026 181584900 4093740
19 21343778801 3835983340 236319720 5054000
20 30303773200 5179983060 303519720 6174000
...
- Max Alekseyev, Derivation of the general formula for U(m,n,k), MathOverflow, 2018.
- Petro Kolosov, On the link between binomial theorem and discrete convolution, arXiv:1603.02468 [math.NT], 2016-2025.
- Petro Kolosov, More details on derivation of present sequence.
- Petro Kolosov, Mathematica program, verifies the identity T^(2m+1) = Sum_{k=0..m} (-1)^(m-k)*U(m,T,k)*T^k for m=0,1,...,12.
- Petro Kolosov, History and overview of the polynomial P_b^m(x), 2024.
- Petro Kolosov, An efficient method of spline approximation for power function, arXiv:2503.07618 [math.GM], 2025.
-
(* Define the R[n,k] := A302971(m,j)/A304042(m,j) *)
R[n_, k_] := 0
R[n_, k_] := (2 k + 1)*Binomial[2 k, k]*
Sum[R[n, j]*Binomial[j, 2 k + 1]*(-1)^(j - 1)/(j - k)*
BernoulliB[2 j - 2 k], {j, 2 k + 1, n}] /; 2 k + 1 <= n
R[n_, k_] := (2 n + 1)*Binomial[2 n, n] /; k == n;
(* Define the U(m,l,t) coefficients *)
U[m_, l_, t_] := (-1)^m Sum[Sum[Binomial[j, t] R[m,j] k^(2 j - t) (-1)^j, {j, t, m}], {k, 1, l}];
(* Define the value of the variable 'm' *)
m = 3;
(* Print first 10 rows of U(m,l,t) coefficients for 'm' defined above *)
Column[Table[U[m, l, t], {l, 1, 10}, {t, 0, m}]]
A320047
Consider coefficients U(m,l,k) defined by the identity Sum_{k=1..l} Sum_{j=0..m} A302971(m,j)/A304042(m,j) * k^j * (T-k)^j = Sum_{k=0..m} (-1)^(m-k) * U(m,l,k) * T^k that holds for all positive integers l,m,T. This sequence gives 2-column table read by rows, where n-th row lists coefficients U(1,n,k) for k = 0, 1 and n >= 1.
Original entry on oeis.org
5, 6, 28, 18, 81, 36, 176, 60, 325, 90, 540, 126, 833, 168, 1216, 216, 1701, 270, 2300, 330, 3025, 396, 3888, 468, 4901, 546, 6076, 630, 7425, 720, 8960, 816, 10693, 918, 12636, 1026, 14801, 1140, 17200, 1260, 19845, 1386, 22748, 1518, 25921, 1656
Offset: 1
column column
l k=0 k=1
--- ------ ------
1 5 6
2 28 18
3 81 36
4 176 60
5 325 90
6 540 126
7 833 168
8 1216 216
9 1701 270
10 2300 330
11 3025 396
12 3888 468
...
- Max Alekseyev, Derivation of the general formula for U(m,n,k), MathOverflow, 2018.
- Petro Kolosov, On the link between binomial theorem and discrete convolution, arXiv:1603.02468 [math.NT], 2016-2025.
- Petro Kolosov, More details on derivation of present sequence.
- Petro Kolosov, Mathematica program, verifies the identity T^(2m+1) = Sum_{k=0..m} (-1)^(m-k)*U(m,T,k)*T^k for m=0,1,...,12.
- Petro Kolosov, History and overview of the polynomial P_b^m(x), 2024.
- Petro Kolosov, An efficient method of spline approximation for power function, arXiv:2503.07618 [math.GM], 2025.
-
(* Define the R[n,k] := A302971(n,k)/A304042(n,k) *)
R[n_, k_] := 0
R[n_, k_] := (2 k + 1)*Binomial[2 k, k]*
Sum[R[n, j]*Binomial[j, 2 k + 1]*(-1)^(j - 1)/(j - k)*
BernoulliB[2 j - 2 k], {j, 2 k + 1, n}] /; 2 k + 1 <= n
R[n_, k_] := (2 n + 1)*Binomial[2 n, n] /; k == n;
(* Define the U(m,l,t) coefficients *)
U[m_, l_, t_] := (-1)^m Sum[Sum[Binomial[j, t] R[m,j] k^(2 j - t) (-1)^j, {j, t, m}], {k, 1, l}];
(* Define the value of the variable 'm' to be m = 1 for A320047 *)
m = 1;
(* Print first 10 rows of U(m,l,t) coefficients for 'm' defined above *)
Column[Table[U[m, l, t], {l, 1, 10}, {t, 0, m}]]
A287326
Triangle read by rows: T(n, k) = 6*k*(n-k) + 1; n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 13, 13, 1, 1, 19, 25, 19, 1, 1, 25, 37, 37, 25, 1, 1, 31, 49, 55, 49, 31, 1, 1, 37, 61, 73, 73, 61, 37, 1, 1, 43, 73, 91, 97, 91, 73, 43, 1, 1, 49, 85, 109, 121, 121, 109, 85, 49, 1, 1, 55, 97, 127, 145, 151, 145, 127, 97, 55, 1, 1, 61, 109, 145, 169, 181, 181, 169, 145, 109, 61, 1
Offset: 0
Triangle begins:
----------------------------------------
k= 0 1 2 3 4 5 6 7 8
----------------------------------------
n=0: 1;
n=1: 1, 1;
n=2: 1, 7, 1;
n=3: 1, 13, 13, 1;
n=4: 1, 19, 25, 19, 1;
n=5: 1, 25, 37, 37, 25, 1;
n=6: 1, 31, 49, 55, 49, 31, 1;
n=7: 1, 37, 61, 73, 73, 61, 37, 1;
n=8: 1, 43, 73, 91, 97, 91, 73, 43, 1;
Various cases of L(m, n, k): This sequence (m=1),
A300656(m=2),
A300785(m=3). See comments for L(m, n, k).
Differences of cubes n^3 are T(
A000124(n), 1).
-
Flat(List([0..11],n->List([0..n],k->6*k*(n-k)+1))); # Muniru A Asiru, Oct 09 2018
-
/* As triangle */ [[6*k*(n-k) + 1: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Oct 26 2018
-
T := (n, k) -> 6*k*(n-k) + 1:
seq(seq(T(n, k), k=0..n), n=0..11); # Muniru A Asiru, Oct 09 2018
-
T[n_, k_] := 6 k (n - k) + 1; Column[Table[T[n, k], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Jun 02 2019 *)
-
t(n, k) = 6*k*(n-k)+1
trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))
/* Print initial 9 rows of triangle as follows */
trianglerows(9) \\ Felix Fröhlich, Jan 09 2018
-
def A287326(n,k): return 6*k*(n-k) + 1
flatten([[A287326(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Sep 25 2024
A300656
Triangle read by rows: T(n,k) = 30*k^2*(n-k)^2 + 1; n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 31, 1, 1, 121, 121, 1, 1, 271, 481, 271, 1, 1, 481, 1081, 1081, 481, 1, 1, 751, 1921, 2431, 1921, 751, 1, 1, 1081, 3001, 4321, 4321, 3001, 1081, 1, 1, 1471, 4321, 6751, 7681, 6751, 4321, 1471, 1, 1, 1921, 5881, 9721, 12001, 12001, 9721, 5881, 1921, 1
Offset: 0
Triangle begins:
--------------------------------------------------------------------------
k= 0 1 2 3 4 5 6 7 8 9 10
--------------------------------------------------------------------------
n=0: 1;
n=1: 1, 1;
n=2: 1, 31, 1;
n=3: 1, 121, 121, 1;
n=4: 1, 271, 481, 271, 1;
n=5: 1, 481, 1081, 1081, 481, 1;
n=6: 1, 751, 1921, 2431, 1921, 751, 1;
n=7: 1, 1081, 3001, 4321, 4321, 3001, 1081, 1;
n=8: 1, 1471, 4321, 6751, 7681, 6751, 4321, 1471, 1;
n=9: 1, 1921, 5881, 9721, 12001, 12001, 9721, 5881, 1921, 1;
n=10: 1, 2431, 7681, 13231, 17281, 18751, 17281, 13231, 7681, 2431, 1;
Various cases of L(m, n, k):
A287326(m=1), This sequence (m=2),
A300785(m=3). See comments for L(m, n, k).
Row sums give the nonzero terms of
A002561.
Cf.
A000584,
A287326,
A007318,
A077028,
A294317,
A068236,
A302971,
A304042,
A002561,
A258807,
A158558,
A094053,
A024003,
A316349.
-
T:=Flat(List([0..9],n->List([0..n],k->30*k^2*(n-k)^2+1))); # Muniru A Asiru, Oct 24 2018
-
[[30*k^2*(n-k)^2+1: k in [0..n]]: n in [0..12]]; // G. C. Greubel, Dec 14 2018
-
a:=(n,k)->30*k^2*(n-k)^2+1: seq(seq(a(n,k),k=0..n),n=0..9); # Muniru A Asiru, Oct 24 2018
-
T[n_, k_] := 30 k^2 (n - k)^2 + 1; Column[
Table[T[n, k], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Apr 12 2020 *)
f[n_]:=Table[SeriesCoefficient[(1 + 26 y + 336 y^2 + 326 y^3 + 31 y^4 + x^2 (1 + 116 y + 486 y^2 + 116 y^3 + y^4) + x (-2 - 82 y - 882 y^2 - 502 y^3 + 28 y^4))/((-1 + x)^3 (-1 + y)^5), {x, 0, i}, {y, 0, j}], {i, n, n}, {j, 0, n}]; Flatten[Array[f, 11, 0]] (* Stefano Spezia, Oct 30 2018 *)
-
t(n, k) = 30*k^2*(n-k)^2+1
trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))
/* Print initial 9 rows of triangle as follows */ trianglerows(9)
-
[[30*k^2*(n-k)^2+1 for k in range(n+1)] for n in range(12)] # G. C. Greubel, Dec 14 2018
A300785
Triangle read by rows: T(n,k) = 140*k^3*(n-k)^3 - 14*k*(n-k) + 1; n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 127, 1, 1, 1093, 1093, 1, 1, 3739, 8905, 3739, 1, 1, 8905, 30157, 30157, 8905, 1, 1, 17431, 71569, 101935, 71569, 17431, 1, 1, 30157, 139861, 241753, 241753, 139861, 30157, 1, 1, 47923, 241753, 472291, 573217, 472291, 241753, 47923, 1, 1, 71569, 383965, 816229, 1119721, 1119721, 816229, 383965, 71569, 1
Offset: 0
Triangle begins:
--------------------------------------------------------------------
k= 0 1 2 3 4 5 6 7 8
--------------------------------------------------------------------
n=0: 1;
n=1: 1, 1;
n=2: 1, 127, 1;
n=3: 1, 1093, 1093, 1;
n=4: 1, 3739, 8905, 3739, 1;
n=5: 1, 8905, 30157, 30157, 8905, 1;
n=6: 1, 17431, 71569, 101935, 71569, 17431, 1;
n=7: 1, 30157, 139861, 241753, 241753, 139861, 30157, 1;
n=8: 1, 47923, 241753, 472291, 573217, 472291, 241753, 47923, 1;
Various cases of L(m, n, k):
A287326 (m=1),
A300656 (m=2), This sequence (m=3). See comments for L(m, n, k).
Cf.
A000584,
A287326,
A007318,
A077028,
A294317,
A068236,
A300656,
A302971,
A304042,
A001015,
A094053,
A258808,
A024005,
A316387.
-
T:=Flat(List([0..9], n->List([0..n], k->140*k^3*(n-k)^3 - 14*k*(n-k)+1))); # G. C. Greubel, Dec 14 2018
-
/* As triangle */ [[140*k^3*(n-k)^3-14*k*(n-k)+1: k in [0..n]]: n in [0..10]]; // Bruno Berselli, Mar 21 2018
-
T:=(n,k)->140*k^3*(n-k)^3-14*k*(n-k)+1: seq(seq(T(n,k),k=0..n),n=0..9); # Muniru A Asiru, Dec 14 2018
-
T[n_, k_] := 140*k^3*(n - k)^3 - 14*k*(n - k) + 1; Column[
Table[T[n, k], {n, 0, 10}, {k, 0, n}], Center] (* From Kolosov Petro, Apr 12 2020 *)
-
t(n, k) = 140*k^3*(n-k)^3-14*k*(n-k)+1
trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))
/* Print initial 9 rows of triangle as follows */ trianglerows(9)
-
[[140*k^3*(n-k)^3 - 14*k*(n-k)+1 for k in range(n+1)] for n in range(12)] # G. C. Greubel, Dec 14 2018
A302971
Triangle read by rows: T(n,k) is the numerator of R(n,k) defined implicitly by the identity Sum_{i=0..l-1} Sum_{j=0..m} R(m,j)*(l-i)^j*i^j = l^(2*m+1) holding for all l,m >= 0.
Original entry on oeis.org
1, 1, 6, 1, 0, 30, 1, -14, 0, 140, 1, -120, 0, 0, 630, 1, -1386, 660, 0, 0, 2772, 1, -21840, 18018, 0, 0, 0, 12012, 1, -450054, 491400, -60060, 0, 0, 0, 51480, 1, -11880960, 15506040, -3712800, 0, 0, 0, 0, 218790, 1, -394788954, 581981400, -196409840, 8817900, 0, 0, 0, 0, 923780, 1, -16172552880, 26003271294, -10863652800, 1031151660, 0, 0, 0, 0, 0, 3879876
Offset: 0
Triangle begins:
------------------------------------------------------------------------
k= 0 1 2 3 4 5 6 7 8
------------------------------------------------------------------------
n=0: 1;
n=1: 1, 6;
n=2: 1, 0, 30;
n=3: 1, -14, 0, 140;
n=4: 1, -120, 0, 0, 630;
n=5: 1, -1386, 660, 0, 0, 2772;
n=6: 1, -21840, 18018, 0, 0, 0, 12012;
n=7: 1, -450054, 491400, -60060, 0, 0, 0, 51480;
n=8: 1, -11880960, 15506040, -3712800, 0, 0, 0, 0, 218790;
- P.-Y. Huang, S.-C. Liu, and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
- C. Jordan, Calculus of Finite Differences, Röttig and Romwalter, Budapest, 1939. [Annotated scans of pages 448-450 only]
- Petro Kolosov, On the link between binomial theorem and discrete convolution, arXiv:1603.02468 [math.NT], 2016-2025.
- Petro Kolosov, Definition and table of values.
- Petro Kolosov, An unusual identity for odd-powers, arXiv:2101.00227 [math.GM], 2021.
- Petro Kolosov, 106.37 An unusual identity for odd-powers, The Mathematical Gazette, 2022.
- Petro Kolosov, Polynomial identity involving binomial theorem and Faulhaber's formula, 2023.
- Petro Kolosov, History and overview of the polynomial P_b^m(x), 2024.
- Petro Kolosov, A novel proof of power rule in calculus, GitHub, 2024. See p. 5.
- Petro Kolosov, Odd-power identity via multiplication of certain matrices, GitHub, 2024. See p. 4.
- Petro Kolosov, An efficient method of spline approximation for power function, arXiv:2503.07618 [math.GM], 2025.
- Petro Kolosov, Discussion on coefficients of odd polynomial identity, GitHub, 2025.
- MathOverflow, Discussion of these coefficients, 2018.
Items of second row are the coefficients in the definition of
A287326.
Items of third row are the coefficients in the definition of
A300656.
Items of fourth row are the coefficients in the definition of
A300785.
Denominators of R(n,k) are shown in
A304042.
Cf.
A007318,
A027641,
A027642,
A055012,
A077028,
A000146,
A002882,
A003245,
A127187,
A127188,
A074909,
A164555.
-
R := proc(n, k) if k < 0 or k > n then return 0 fi; (2*k+1)*binomial(2*k, k);
if n = k then % else -%*add((-1)^j*R(n, j)*binomial(j, 2*k+1)*
bernoulli(2*j-2*k)/(j-k), j=2*k+1..n) fi end: T := (n, k) -> numer(R(n, k)):
seq(print(seq(T(n, k), k=0..n)), n=0..12);
# Numerical check that S(m, n) = n^(2*m+1):
S := (m, n) -> add(add(R(m, j)*(n-k)^j*k^j, j=0..m), k=0..n-1):
seq(seq(S(m, n) - n^(2*m+1), n=0..12), m=0..12); # Peter Luschny, Apr 30 2018
-
R[n_, k_] := 0
R[n_, k_] := (2 k + 1)*Binomial[2 k, k]*
Sum[R[n, j]*Binomial[j, 2 k + 1]*(-1)^(j - 1)/(j - k)*
BernoulliB[2 j - 2 k], {j, 2 k + 1, n}] /; 2 k + 1 <= n
R[n_, k_] := (2 n + 1)*Binomial[2 n, n] /; k == n;
T[n_, k_] := Numerator[R[n, k]];
(* Print Fifteen Initial rows of Triangle A302971 *)
Column[ Table[ T[n, k], {n, 0, 15}, {k, 0, n}], Center]
-
T(n, k) = if ((n>k) || (n<0), 0, if (k==n, (2*n+1)*binomial(2*n, n), if (2*n+1>k, 0, if (n==0, 1, (2*n+1)*binomial(2*n, n)*sum(j=2*n+1, k+1, T(j, k)*binomial(j, 2*n+1)*(-1)^(j-1)/(j-n)*bernfrac(2*j-2*n))))));
tabl(nn) = for (n=0, nn, for (k=0, n, print1(numerator(T(k,n)), ", ")); print); \\ Michel Marcus, Apr 27 2018
A306548
Triangle T(n,k) read by rows, where the k-th column is the shifted self-convolution of the power function n^k, n >= 0, 0 <= k <= n.
Original entry on oeis.org
0, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 4, 1, 0, 0, 4, 10, 8, 1, 0, 0, 5, 20, 34, 16, 1, 0, 0, 6, 35, 104, 118, 32, 1, 0, 0, 7, 56, 259, 560, 418, 64, 1, 0, 0, 8, 84, 560, 2003, 3104, 1510, 128, 1, 0, 0, 9, 120, 1092, 5888, 16003, 17600, 5554, 256, 1, 0, 0, 10, 165, 1968, 14988, 64064, 130835, 101504, 20758, 512, 1, 0, 0
Offset: 0
==================================================================
k= 0 1 2 3 4 5 6 7 8 9 10
==================================================================
n=0: 2;
n=1: 2, 0;
n=2: 3, 0, 0;
n=3: 4, 1, 0, 0;
n=4: 5, 4, 1, 0, 0;
n=5: 6, 10, 8, 1, 0, 0;
n=6: 7, 20, 34, 16, 1, 0, 0;
n=7: 8, 35, 104, 118, 32, 1, 0, 0;
n=8: 9, 56, 259, 560, 418, 64, 1, 0, 0;
n=9: 10, 84, 560, 2003, 3104, 1510, 128, 1, 0, 0;
n=10: 11, 120, 1092, 5888, 16003, 17600, 5554, 256, 1, 0; 0;
...
-
f[m_, s_] := Piecewise[{{s^m, s >= 0}, {0, True}}];
F[n_, m_] := Sum[f[m, n - k]*f[m, k], {k, -Infinity, +Infinity}];
T[n_, k_] := F[n - k, k];
Column[Table[T[n, k], {n, 0, 12}, {k, 0, n}], Left]
Showing 1-8 of 8 results.
Comments