A300785
Triangle read by rows: T(n,k) = 140*k^3*(n-k)^3 - 14*k*(n-k) + 1; n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 127, 1, 1, 1093, 1093, 1, 1, 3739, 8905, 3739, 1, 1, 8905, 30157, 30157, 8905, 1, 1, 17431, 71569, 101935, 71569, 17431, 1, 1, 30157, 139861, 241753, 241753, 139861, 30157, 1, 1, 47923, 241753, 472291, 573217, 472291, 241753, 47923, 1, 1, 71569, 383965, 816229, 1119721, 1119721, 816229, 383965, 71569, 1
Offset: 0
Triangle begins:
--------------------------------------------------------------------
k= 0 1 2 3 4 5 6 7 8
--------------------------------------------------------------------
n=0: 1;
n=1: 1, 1;
n=2: 1, 127, 1;
n=3: 1, 1093, 1093, 1;
n=4: 1, 3739, 8905, 3739, 1;
n=5: 1, 8905, 30157, 30157, 8905, 1;
n=6: 1, 17431, 71569, 101935, 71569, 17431, 1;
n=7: 1, 30157, 139861, 241753, 241753, 139861, 30157, 1;
n=8: 1, 47923, 241753, 472291, 573217, 472291, 241753, 47923, 1;
Various cases of L(m, n, k):
A287326 (m=1),
A300656 (m=2), This sequence (m=3). See comments for L(m, n, k).
Cf.
A000584,
A287326,
A007318,
A077028,
A294317,
A068236,
A300656,
A302971,
A304042,
A001015,
A094053,
A258808,
A024005,
A316387.
-
T:=Flat(List([0..9], n->List([0..n], k->140*k^3*(n-k)^3 - 14*k*(n-k)+1))); # G. C. Greubel, Dec 14 2018
-
/* As triangle */ [[140*k^3*(n-k)^3-14*k*(n-k)+1: k in [0..n]]: n in [0..10]]; // Bruno Berselli, Mar 21 2018
-
T:=(n,k)->140*k^3*(n-k)^3-14*k*(n-k)+1: seq(seq(T(n,k),k=0..n),n=0..9); # Muniru A Asiru, Dec 14 2018
-
T[n_, k_] := 140*k^3*(n - k)^3 - 14*k*(n - k) + 1; Column[
Table[T[n, k], {n, 0, 10}, {k, 0, n}], Center] (* From Kolosov Petro, Apr 12 2020 *)
-
t(n, k) = 140*k^3*(n-k)^3-14*k*(n-k)+1
trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))
/* Print initial 9 rows of triangle as follows */ trianglerows(9)
-
[[140*k^3*(n-k)^3 - 14*k*(n-k)+1 for k in range(n+1)] for n in range(12)] # G. C. Greubel, Dec 14 2018
A316349
Consider coefficients U(m,L,k) defined by the identity Sum_{k=1..L} Sum_{j=0..m} A302971(m,j)/A304042(m,j) * k^j * (T-k)^j = Sum_{k=0..m} (-1)^(m-k) * U(m,L,k) * T^k that holds for all positive integers L,m,T. This sequence gives 3-column table read by rows, where the n-th row lists coefficients U(2,n,k) for k = 0, 1, 2; n >= 1.
Original entry on oeis.org
31, 60, 30, 512, 540, 150, 2943, 2160, 420, 10624, 6000, 900, 29375, 13500, 1650, 68256, 26460, 2730, 140287, 47040, 4200, 263168, 77760, 6120, 459999, 121500, 8550, 760000, 181500, 11550, 1199231, 261360, 15180, 1821312, 365040, 19500, 2678143, 496860, 24570, 3830624, 661500, 30450
Offset: 1
column column column
L k=0 k=1 k=2
-- ------- ------- ------
1 31 60 30
2 512 540 150
3 2943 2160 420
4 10624 6000 900
5 29375 13500 1650
6 68256 26460 2730
7 140287 47040 4200
8 263168 77760 6120
9 459999 121500 8550
10 760000 181500 11550
11 1199231 261360 15180
12 1821312 365040 19500
...
- Max Alekseyev, Derivation of the general formula for U(m,n,k), MathOverflow, 2018.
- Petro Kolosov, On the link between binomial theorem and discrete convolution, arXiv:1603.02468 [math.NT], 2016-2025.
- Petro Kolosov, More details on derivation of present sequence.
- Petro Kolosov, Mathematica program, verifies the identity T^(2m+1) = Sum_{k=0..m} (-1)^(m-k)*U(m,T,k)*T^k for m=0,1,...,12.
- Petro Kolosov, History and overview of the polynomial P_b^m(x), 2024.
- Petro Kolosov, An efficient method of spline approximation for power function, arXiv:2503.07618 [math.GM], 2025.
-
(* Define the R[n,k] := A302971(m,j)/A304042(m,j) *)
R[n_, k_] := 0
R[n_, k_] := (2 k + 1)*Binomial[2 k, k]*
Sum[R[n, j]*Binomial[j, 2 k + 1]*(-1)^(j - 1)/(j - k)*
BernoulliB[2 j - 2 k], {j, 2 k + 1, n}] /; 2 k + 1 <= n
R[n_, k_] := (2 n + 1)*Binomial[2 n, n] /; k == n;
(* Define the U(m,l,t) coefficients *)
U[m_, l_, t_] := (-1)^m Sum[Sum[Binomial[j, t] R[m,j] k^(2 j - t) (-1)^j, {j, t, m}], {k, 1, l}];
(* Define the value of the variable 'm', should be m = 2 for A316349 *)
m = 2;
(* Print first 10 rows of U(m,l,t) coefficients over l: 1 <= l <= 10 *)
Column[Table[U[m, l, t], {l, 1, 10}, {t, 0, m}]]
A317981
Expansion of x*(125 + 8028*x + 42237*x^2 + 42272*x^3 + 8007*x^4 + 132*x^5 - x^6) / (1 - x)^8.
Original entry on oeis.org
125, 9028, 110961, 684176, 2871325, 9402660, 25872833, 62572096, 136972701, 276971300, 524988145, 943023888, 1618774781, 2672907076, 4267591425, 6616398080, 9995653693, 14757360516, 21343778801, 30303773200, 42311023965, 58184203748, 78909220801
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).
-
LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{125,9028,110961,684176,2871325,9402660,25872833,62572096},30] (* Harvey P. Dale, Dec 29 2024 *)
-
Vec(x*(125 + 8028*x + 42237*x^2 + 42272*x^3 + 8007*x^4 + 132*x^5 - x^6) / (1 - x)^8 + O(x^40))
-
a(n) = 20*n^7 + 70*n^6 + 70*n^5 - 28*n^3 - 7*n^2
A317982
Expansion of 14*x*(29 + 784*x + 1974*x^2 + 784*x^3 + 29*x^4) / (1 - x)^7.
Original entry on oeis.org
406, 13818, 115836, 545860, 1858290, 5124126, 12182968, 25945416, 50745870, 92745730, 160386996, 264896268, 420839146, 646725030, 965662320, 1406064016, 2002403718, 2796022026, 3835983340, 5179983060, 6895305186, 9059830318, 11763094056, 15107395800
Offset: 1
-
LinearRecurrence[{7,-21,35,-35,21,-7,1},{406,13818,115836,545860,1858290,5124126,12182968},30] (* Harvey P. Dale, Nov 15 2022 *)
-
Vec(14*x*(29 + 784*x + 1974*x^2 + 784*x^3 + 29*x^4) / (1 - x)^7 + O(x^40))
-
a(n) = 70*n^6 + 210*n^5 + 175*n^4 - 42*n^2 - 7*n
A317983
Expansion of 420*x*(1 + x)*(1 + 10*x + x^2) / (1 - x)^6.
Original entry on oeis.org
420, 7140, 41160, 148680, 411180, 955500, 1963920, 3684240, 6439860, 10639860, 16789080, 25498200, 37493820, 53628540, 74891040, 102416160, 137494980, 181584900, 236319720, 303519720, 385201740, 483589260, 601122480, 740468400, 904530900, 1096460820
Offset: 1
A317984
Expansion of 140*x*(1 + 4*x + x^2) / (1 - x)^5.
Original entry on oeis.org
140, 1260, 5040, 14000, 31500, 61740, 109760, 181440, 283500, 423500, 609840, 851760, 1159340, 1543500, 2016000, 2589440, 3277260, 4093740, 5054000, 6174000, 7470540, 8961260, 10664640, 12600000, 14787500, 17248140, 20003760, 23077040, 26491500, 30271500
Offset: 1
A320047
Consider coefficients U(m,l,k) defined by the identity Sum_{k=1..l} Sum_{j=0..m} A302971(m,j)/A304042(m,j) * k^j * (T-k)^j = Sum_{k=0..m} (-1)^(m-k) * U(m,l,k) * T^k that holds for all positive integers l,m,T. This sequence gives 2-column table read by rows, where n-th row lists coefficients U(1,n,k) for k = 0, 1 and n >= 1.
Original entry on oeis.org
5, 6, 28, 18, 81, 36, 176, 60, 325, 90, 540, 126, 833, 168, 1216, 216, 1701, 270, 2300, 330, 3025, 396, 3888, 468, 4901, 546, 6076, 630, 7425, 720, 8960, 816, 10693, 918, 12636, 1026, 14801, 1140, 17200, 1260, 19845, 1386, 22748, 1518, 25921, 1656
Offset: 1
column column
l k=0 k=1
--- ------ ------
1 5 6
2 28 18
3 81 36
4 176 60
5 325 90
6 540 126
7 833 168
8 1216 216
9 1701 270
10 2300 330
11 3025 396
12 3888 468
...
- Max Alekseyev, Derivation of the general formula for U(m,n,k), MathOverflow, 2018.
- Petro Kolosov, On the link between binomial theorem and discrete convolution, arXiv:1603.02468 [math.NT], 2016-2025.
- Petro Kolosov, More details on derivation of present sequence.
- Petro Kolosov, Mathematica program, verifies the identity T^(2m+1) = Sum_{k=0..m} (-1)^(m-k)*U(m,T,k)*T^k for m=0,1,...,12.
- Petro Kolosov, History and overview of the polynomial P_b^m(x), 2024.
- Petro Kolosov, An efficient method of spline approximation for power function, arXiv:2503.07618 [math.GM], 2025.
-
(* Define the R[n,k] := A302971(n,k)/A304042(n,k) *)
R[n_, k_] := 0
R[n_, k_] := (2 k + 1)*Binomial[2 k, k]*
Sum[R[n, j]*Binomial[j, 2 k + 1]*(-1)^(j - 1)/(j - k)*
BernoulliB[2 j - 2 k], {j, 2 k + 1, n}] /; 2 k + 1 <= n
R[n_, k_] := (2 n + 1)*Binomial[2 n, n] /; k == n;
(* Define the U(m,l,t) coefficients *)
U[m_, l_, t_] := (-1)^m Sum[Sum[Binomial[j, t] R[m,j] k^(2 j - t) (-1)^j, {j, t, m}], {k, 1, l}];
(* Define the value of the variable 'm' to be m = 1 for A320047 *)
m = 1;
(* Print first 10 rows of U(m,l,t) coefficients for 'm' defined above *)
Column[Table[U[m, l, t], {l, 1, 10}, {t, 0, m}]]
Showing 1-7 of 7 results.
Comments