A300656
Triangle read by rows: T(n,k) = 30*k^2*(n-k)^2 + 1; n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 1, 31, 1, 1, 121, 121, 1, 1, 271, 481, 271, 1, 1, 481, 1081, 1081, 481, 1, 1, 751, 1921, 2431, 1921, 751, 1, 1, 1081, 3001, 4321, 4321, 3001, 1081, 1, 1, 1471, 4321, 6751, 7681, 6751, 4321, 1471, 1, 1, 1921, 5881, 9721, 12001, 12001, 9721, 5881, 1921, 1
Offset: 0
Triangle begins:
--------------------------------------------------------------------------
k= 0 1 2 3 4 5 6 7 8 9 10
--------------------------------------------------------------------------
n=0: 1;
n=1: 1, 1;
n=2: 1, 31, 1;
n=3: 1, 121, 121, 1;
n=4: 1, 271, 481, 271, 1;
n=5: 1, 481, 1081, 1081, 481, 1;
n=6: 1, 751, 1921, 2431, 1921, 751, 1;
n=7: 1, 1081, 3001, 4321, 4321, 3001, 1081, 1;
n=8: 1, 1471, 4321, 6751, 7681, 6751, 4321, 1471, 1;
n=9: 1, 1921, 5881, 9721, 12001, 12001, 9721, 5881, 1921, 1;
n=10: 1, 2431, 7681, 13231, 17281, 18751, 17281, 13231, 7681, 2431, 1;
Various cases of L(m, n, k):
A287326(m=1), This sequence (m=2),
A300785(m=3). See comments for L(m, n, k).
Row sums give the nonzero terms of
A002561.
Cf.
A000584,
A287326,
A007318,
A077028,
A294317,
A068236,
A302971,
A304042,
A002561,
A258807,
A158558,
A094053,
A024003,
A316349.
-
T:=Flat(List([0..9],n->List([0..n],k->30*k^2*(n-k)^2+1))); # Muniru A Asiru, Oct 24 2018
-
[[30*k^2*(n-k)^2+1: k in [0..n]]: n in [0..12]]; // G. C. Greubel, Dec 14 2018
-
a:=(n,k)->30*k^2*(n-k)^2+1: seq(seq(a(n,k),k=0..n),n=0..9); # Muniru A Asiru, Oct 24 2018
-
T[n_, k_] := 30 k^2 (n - k)^2 + 1; Column[
Table[T[n, k], {n, 0, 10}, {k, 0, n}], Center] (* Kolosov Petro, Apr 12 2020 *)
f[n_]:=Table[SeriesCoefficient[(1 + 26 y + 336 y^2 + 326 y^3 + 31 y^4 + x^2 (1 + 116 y + 486 y^2 + 116 y^3 + y^4) + x (-2 - 82 y - 882 y^2 - 502 y^3 + 28 y^4))/((-1 + x)^3 (-1 + y)^5), {x, 0, i}, {y, 0, j}], {i, n, n}, {j, 0, n}]; Flatten[Array[f, 11, 0]] (* Stefano Spezia, Oct 30 2018 *)
-
t(n, k) = 30*k^2*(n-k)^2+1
trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))
/* Print initial 9 rows of triangle as follows */ trianglerows(9)
-
[[30*k^2*(n-k)^2+1 for k in range(n+1)] for n in range(12)] # G. C. Greubel, Dec 14 2018
A316387
Consider coefficients U(m,L,k) defined by the identity Sum_{k=1..L} Sum_{j=0..m} A302971(m,j)/A304042(m,j) * k^j * (T-k)^j = Sum_{k=0..m} (-1)^(m-k) * U(m,L,k) * T^k that holds for all positive integers L,m,T. This sequence gives 4-column table read by rows, where the n-th row lists coefficients U(3,n,k) for k = 0, 1, 2, 3; n >= 1.
Original entry on oeis.org
125, 406, 420, 140, 9028, 13818, 7140, 1260, 110961, 115836, 41160, 5040, 684176, 545860, 148680, 14000, 2871325, 1858290, 411180, 31500, 9402660, 5124126, 955500, 61740, 25872833, 12182968, 1963920, 109760, 62572096, 25945416, 3684240, 181440, 136972701, 50745870, 6439860, 283500, 276971300, 92745730, 10639860, 423500
Offset: 1
column column column column
L k=0 k=1 k=2 k=3
-- ------------ ---------- ---------- -------
1 125 406 420 140
2 9028 13818 7140 1260
3 110961 115836 41160 5040
4 684176 545860 148680 14000
5 2871325 1858290 411180 31500
6 9402660 5124126 955500 61740
7 25872833 12182968 1963920 109760
8 62572096 25945416 3684240 181440
9 136972701 50745870 6439860 283500
10 276971300 92745730 10639860 423500
11 524988145 160386996 16789080 609840
12 943023888 264896268 25498200 851760
13 1618774781 420839146 37493820 1159340
14 2672907076 646725030 53628540 1543500
15 4267591425 965662320 74891040 2016000
16 6616398080 1406064016 102416160 2589440
17 9995653693 2002403718 137494980 3277260
18 14757360516 2796022026 181584900 4093740
19 21343778801 3835983340 236319720 5054000
20 30303773200 5179983060 303519720 6174000
...
- Max Alekseyev, Derivation of the general formula for U(m,n,k), MathOverflow, 2018.
- Petro Kolosov, On the link between binomial theorem and discrete convolution, arXiv:1603.02468 [math.NT], 2016-2025.
- Petro Kolosov, More details on derivation of present sequence.
- Petro Kolosov, Mathematica program, verifies the identity T^(2m+1) = Sum_{k=0..m} (-1)^(m-k)*U(m,T,k)*T^k for m=0,1,...,12.
- Petro Kolosov, History and overview of the polynomial P_b^m(x), 2024.
- Petro Kolosov, An efficient method of spline approximation for power function, arXiv:2503.07618 [math.GM], 2025.
-
(* Define the R[n,k] := A302971(m,j)/A304042(m,j) *)
R[n_, k_] := 0
R[n_, k_] := (2 k + 1)*Binomial[2 k, k]*
Sum[R[n, j]*Binomial[j, 2 k + 1]*(-1)^(j - 1)/(j - k)*
BernoulliB[2 j - 2 k], {j, 2 k + 1, n}] /; 2 k + 1 <= n
R[n_, k_] := (2 n + 1)*Binomial[2 n, n] /; k == n;
(* Define the U(m,l,t) coefficients *)
U[m_, l_, t_] := (-1)^m Sum[Sum[Binomial[j, t] R[m,j] k^(2 j - t) (-1)^j, {j, t, m}], {k, 1, l}];
(* Define the value of the variable 'm' *)
m = 3;
(* Print first 10 rows of U(m,l,t) coefficients for 'm' defined above *)
Column[Table[U[m, l, t], {l, 1, 10}, {t, 0, m}]]
A320047
Consider coefficients U(m,l,k) defined by the identity Sum_{k=1..l} Sum_{j=0..m} A302971(m,j)/A304042(m,j) * k^j * (T-k)^j = Sum_{k=0..m} (-1)^(m-k) * U(m,l,k) * T^k that holds for all positive integers l,m,T. This sequence gives 2-column table read by rows, where n-th row lists coefficients U(1,n,k) for k = 0, 1 and n >= 1.
Original entry on oeis.org
5, 6, 28, 18, 81, 36, 176, 60, 325, 90, 540, 126, 833, 168, 1216, 216, 1701, 270, 2300, 330, 3025, 396, 3888, 468, 4901, 546, 6076, 630, 7425, 720, 8960, 816, 10693, 918, 12636, 1026, 14801, 1140, 17200, 1260, 19845, 1386, 22748, 1518, 25921, 1656
Offset: 1
column column
l k=0 k=1
--- ------ ------
1 5 6
2 28 18
3 81 36
4 176 60
5 325 90
6 540 126
7 833 168
8 1216 216
9 1701 270
10 2300 330
11 3025 396
12 3888 468
...
- Max Alekseyev, Derivation of the general formula for U(m,n,k), MathOverflow, 2018.
- Petro Kolosov, On the link between binomial theorem and discrete convolution, arXiv:1603.02468 [math.NT], 2016-2025.
- Petro Kolosov, More details on derivation of present sequence.
- Petro Kolosov, Mathematica program, verifies the identity T^(2m+1) = Sum_{k=0..m} (-1)^(m-k)*U(m,T,k)*T^k for m=0,1,...,12.
- Petro Kolosov, History and overview of the polynomial P_b^m(x), 2024.
- Petro Kolosov, An efficient method of spline approximation for power function, arXiv:2503.07618 [math.GM], 2025.
-
(* Define the R[n,k] := A302971(n,k)/A304042(n,k) *)
R[n_, k_] := 0
R[n_, k_] := (2 k + 1)*Binomial[2 k, k]*
Sum[R[n, j]*Binomial[j, 2 k + 1]*(-1)^(j - 1)/(j - k)*
BernoulliB[2 j - 2 k], {j, 2 k + 1, n}] /; 2 k + 1 <= n
R[n_, k_] := (2 n + 1)*Binomial[2 n, n] /; k == n;
(* Define the U(m,l,t) coefficients *)
U[m_, l_, t_] := (-1)^m Sum[Sum[Binomial[j, t] R[m,j] k^(2 j - t) (-1)^j, {j, t, m}], {k, 1, l}];
(* Define the value of the variable 'm' to be m = 1 for A320047 *)
m = 1;
(* Print first 10 rows of U(m,l,t) coefficients for 'm' defined above *)
Column[Table[U[m, l, t], {l, 1, 10}, {t, 0, m}]]
A316457
Expansion of x*(31 + 326*x + 336*x^2 + 26*x^3 + x^4) / (1 - x)^6.
Original entry on oeis.org
31, 512, 2943, 10624, 29375, 68256, 140287, 263168, 459999, 760000, 1199231, 1821312, 2678143, 3830624, 5349375, 7315456, 9821087, 12970368, 16879999, 21680000, 27514431, 34542112, 42937343, 52890624, 64609375, 78318656, 94261887, 112701568, 133919999
Offset: 1
A316458
Expansion of 60*x*(1 + 4*x + x^2) / (1 - x)^5.
Original entry on oeis.org
60, 540, 2160, 6000, 13500, 26460, 47040, 77760, 121500, 181500, 261360, 365040, 496860, 661500, 864000, 1109760, 1404540, 1754460, 2166000, 2646000, 3201660, 3840540, 4570560, 5400000, 6337500, 7392060, 8573040, 9890160, 11353500, 12973500, 14760960
Offset: 1
A316459
Expansion of 30*x*(1 + x) / (1 - x)^4.
Original entry on oeis.org
30, 150, 420, 900, 1650, 2730, 4200, 6120, 8550, 11550, 15180, 19500, 24570, 30450, 37200, 44880, 53550, 63270, 74100, 86100, 99330, 113850, 129720, 147000, 165750, 186030, 207900, 231420, 256650, 283650, 312480, 343200, 375870, 410550, 447300, 486180
Offset: 1
Showing 1-6 of 6 results.
Comments