A304163 a(n) = 9*n^2 - 3*n + 1 with n>0.
7, 31, 73, 133, 211, 307, 421, 553, 703, 871, 1057, 1261, 1483, 1723, 1981, 2257, 2551, 2863, 3193, 3541, 3907, 4291, 4693, 5113, 5551, 6007, 6481, 6973, 7483, 8011, 8557, 9121, 9703, 10303, 10921, 11557, 12211, 12883, 13573, 14281
Offset: 1
Examples
From _Andrew Howroyd_, May 09 2018: (Start) Illustration of the order 1 graph: o---o / \ / \ o---o---o \ / \ / o---o The order 2 graph is composed of 7 such hexagons and in general the HcDN1(n) graph is constructed from a honeycomb graph with each hexagon subdivided into triangles. (End)
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- S. Hayat, M. A. Malik, and M. Imran, Computing Topological Indices of Honeycomb Derived Networks, Romanian Journal for Information Science and Technology, Volume 18, Number 2, 2015, pages 144-165.
- Leo Tavares, Illustration: Hexagonal Square Rays
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Julia
[9*n^2-3*n+1 for n in 1:40] |> println # Bruno Berselli, May 10 2018
-
Maple
seq(9*n^2-3*n+1, n = 1 .. 40);
-
PARI
a(n) = 9*n^2-3*n+1; \\ Altug Alkan, May 09 2018
-
PARI
Vec(x*(7 + 10*x + x^2)/(1 - x)^3 + O(x^40)) \\ Colin Barker, May 23 2018
Formula
From Bruno Berselli, May 10 2018: (Start)
O.g.f.: x*(7 + 10*x + x^2)/(1 - x)^3.
E.g.f.: -1 + (1 + 3*x)^2*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
Comments