cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A069131 Centered 18-gonal numbers.

Original entry on oeis.org

1, 19, 55, 109, 181, 271, 379, 505, 649, 811, 991, 1189, 1405, 1639, 1891, 2161, 2449, 2755, 3079, 3421, 3781, 4159, 4555, 4969, 5401, 5851, 6319, 6805, 7309, 7831, 8371, 8929, 9505, 10099, 10711, 11341, 11989, 12655, 13339, 14041, 14761, 15499, 16255, 17029, 17821
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Equals binomial transform of [1, 18, 18, 0, 0, 0, ...]. Example: a(3) = 55 = (1, 2, 1) dot (1, 18, 18) = (1 + 36 + 18). - Gary W. Adamson, Aug 24 2010
Narayana transform (A001263) of [1, 18, 0, 0, 0, ...]. - Gary W. Adamson, Jul 28 2011
From Lamine Ngom, Aug 19 2021: (Start)
Sequence is a spoke of the hexagonal spiral built from the terms of A016777 (see illustration in links section).
a(n) is a bisection of A195042.
a(n) is a trisection of A028387.
a(n) + 1 is promic (A002378).
a(n) + 2 is a trisection of A002061.
a(n) + 9 is the arithmetic mean of its neighbors.
4*a(n) + 5 is a square: A016945(n)^2. (End)

Examples

			a(5) = 181 because 9*5^2 - 9*5 + 1 = 225 - 45 + 1 = 181.
		

Crossrefs

Programs

Formula

a(n) = 9*n^2 - 9*n + 1.
a(n) = 18*n + a(n-1) - 18 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: ( x*(1+16*x+x^2) ) / ( (1-x)^3 ). - R. J. Mathar, Feb 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=19, a(3)=55. - Harvey P. Dale, Jan 20 2014
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(5)*Pi/6)/(3*sqrt(5)).
Sum_{n>=1} a(n)/n! = 10*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 10/e - 1. (End)
From Lamine Ngom, Aug 19 2021: (Start)
a(n) = 18*A000217(n) + 1 = 9*A002378(n) + 1.
a(n) = 3*A003215(n) - 2.
a(n) = A247792(n) - 9*n.
a(n) = A082040(n) + A304163(n) - a(n-1) = A016778(n) + A016790(n) - a(n-1), n > 0.
a(n) + a(n+1) = 2*A247792(n) = A010008(n), n > 0.
a(n+1) - a(n) = 18*n = A008600(n). (End)
From Leo Tavares, Oct 31 2021: (Start)
a(n)= A000290(n) + A139278(n-1)
a(n) = A069129(n) + A002378(n-1)
a(n) = A062786(n) + 8*A000217(n-1)
a(n) = A062786(n) + A033996(n-1)
a(n) = A060544(n) + 9*A000217(n-1)
a(n) = A060544(n) + A027468(n-1)
a(n) = A016754(n-1) + 10*A000217(n-1)
a(n) = A016754(n-1) + A124080
a(n) = A069099(n) + 11*A000217(n-1)
a(n) = A069099(n) + A152740(n-1)
a(n) = A003215(n-1) + 12*A000217(n-1)
a(n) = A003215(n-1) + A049598(n-1)
a(n) = A005891(n-1) + 13*A000217(n-1)
a(n) = A005891(n-1) + A152741(n-1)
a(n) = A001844(n) + 14*A000217(n-1)
a(n) = A001844(n) + A163756(n-1)
a(n) = A005448(n) + 15*A000217(n-1)
a(n) = A005448(n) + A194715(n-1). (End)
E.g.f.: exp(x)*(1 + 9*x^2) - 1. - Nikolaos Pantelidis, Feb 06 2023

A304164 a(n) = 27*n^2 - 21*n + 6 (n>=1).

Original entry on oeis.org

12, 72, 186, 354, 576, 852, 1182, 1566, 2004, 2496, 3042, 3642, 4296, 5004, 5766, 6582, 7452, 8376, 9354, 10386, 11472, 12612, 13806, 15054, 16356, 17712, 19122, 20586, 22104, 23676, 25302, 26982, 28716, 30504, 32346, 34242, 36192, 38196, 40254, 42366
Offset: 1

Views

Author

Emeric Deutsch, May 09 2018

Keywords

Comments

a(n) is the number of edges in the HcDN1(n) network (see Fig. 3 in the Hayat et al. manuscript).

Crossrefs

Cf. A304163.

Programs

  • GAP
    List([1..40],n->27*n^2-21*n+6); # Muniru A Asiru, May 10 2018
  • Maple
    seq(27*n^2-21*n+6, n = 1 .. 40);
  • Mathematica
    Table[27n^2-21n+6,{n,40}] (* or *) LinearRecurrence[{3,-3,1},{12,72,186},40] (* Harvey P. Dale, Aug 31 2024 *)
  • PARI
    a(n) = 27*n^2-21*n+6; \\ Altug Alkan, May 09 2018
    
  • PARI
    Vec(6*x*(2 + 6*x + x^2) / (1 - x)^3 + O(x^60)) \\ Colin Barker, May 10 2018
    

Formula

From Colin Barker, May 10 2018: (Start)
G.f.: 6*x*(2 + 6*x + x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
E.g.f.: 3*exp(x)*(2 + 2*x + 9*x^2) - 6. - Stefano Spezia, Apr 15 2023

A304165 a(n) = 324*n^2 - 336*n + 102 (n >= 1).

Original entry on oeis.org

90, 726, 2010, 3942, 6522, 9750, 13626, 18150, 23322, 29142, 35610, 42726, 50490, 58902, 67962, 77670, 88026, 99030, 110682, 122982, 135930, 149526, 163770, 178662, 194202, 210390, 227226, 244710, 262842, 281622, 301050, 321126, 341850, 363222, 385242, 407910, 431226, 455190, 479802, 505062
Offset: 1

Views

Author

Emeric Deutsch, May 09 2018

Keywords

Comments

a(n) is the first Zagreb index of the HcDN1(n) network (see Fig. 3 in the Hayat et al. manuscript).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of HcDN1(n) is M(HcDN1(n);x,y) = 6x^3*y^3 + 12(n-1)x^3*y^5 + 6nx^3*y^6 + 18(n-1)x^5*y^6 + (27n^2 -57n +30)x^6*y^6. - Emeric Deutsch, May 11 2018

Crossrefs

Programs

  • GAP
    List([1..40],n->324*n^2-336*n+102); # Muniru A Asiru, May 10 2018
  • Maple
    seq(324*n^2-336*n+102,n=1..40);
  • Mathematica
    Table[324n^2-336n+102,{n,40}] (* or *) LinearRecurrence[{3,-3,1},{90,726,2010},40] (* Harvey P. Dale, Apr 12 2020 *)
  • PARI
    a(n) = 324*n^2-336*n+102; \\ Altug Alkan, May 09 2018
    
  • PARI
    Vec(6*x*(15 + 76*x + 17*x^2) / (1 - x)^3 + O(x^60)) \\ Colin Barker, May 10 2018
    

Formula

From Colin Barker, May 10 2018: (Start)
G.f.: 6*x*(15 + 76*x + 17*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
E.g.f.: 6*(exp(x)*(17 - 2*x + 54*x^2) - 17). - Stefano Spezia, Apr 15 2023

A304166 a(n) = 972*n^2 - 1224*n + 414 with n > 0.

Original entry on oeis.org

162, 1854, 5490, 11070, 18594, 28062, 39474, 52830, 68130, 85374, 104562, 125694, 148770, 173790, 200754, 229662, 260514, 293310, 328050, 364734, 403362, 443934, 486450, 530910, 577314, 625662, 675954, 728190, 782370, 838494, 896562, 956574, 1018530, 1082430, 1148274, 1216062, 1285794, 1357470, 1431090, 1506654
Offset: 1

Views

Author

Emeric Deutsch, May 09 2018

Keywords

Comments

a(n) provides the second Zagreb index of the HcDN1(n) network (see Fig. 3 in the Hayat et al. paper).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of HcDN1(n) is M(HcDN1(n); x,y) = 6x^3*y^3 + 12(n-1)x^3*y^5 + 6nx^3*y^6 + 18(n-1)x^5*y^6 + (27n^2 - 57n + 30)x^6*y^6. - Emeric Deutsch, May 11 2018

Crossrefs

Programs

  • Maple
    seq(972*n^2-1224*n+414, n = 1 .. 40);
  • PARI
    a(n) = 972*n^2-1224*n+414; \\ Altug Alkan, May 09 2018
    
  • PARI
    Vec(18*x*(9 + 76*x + 23*x^2) / (1 - x)^3 + O(x^60)) \\ Colin Barker, May 10 2018

Formula

From Colin Barker, May 10 2018: (Start)
G.f.: 18*x*(9 + 76*x + 23*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
E.g.f.: 18*(exp(x)*(23 - 14*x + 54*x^2) - 23). - Stefano Spezia, Apr 15 2023
Showing 1-4 of 4 results.