cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A304163 a(n) = 9*n^2 - 3*n + 1 with n>0.

Original entry on oeis.org

7, 31, 73, 133, 211, 307, 421, 553, 703, 871, 1057, 1261, 1483, 1723, 1981, 2257, 2551, 2863, 3193, 3541, 3907, 4291, 4693, 5113, 5551, 6007, 6481, 6973, 7483, 8011, 8557, 9121, 9703, 10303, 10921, 11557, 12211, 12883, 13573, 14281
Offset: 1

Views

Author

Emeric Deutsch, May 09 2018

Keywords

Comments

a(n) provides the number of vertices in the HcDN1(n) network (see Fig. 3 in the Hayat et al. paper).

Examples

			From _Andrew Howroyd_, May 09 2018: (Start)
Illustration of the order 1 graph:
    o---o
   / \ / \
  o---o---o
   \ / \ /
    o---o
The order 2 graph is composed of 7 such hexagons and in general the HcDN1(n) graph is constructed from a honeycomb graph with each hexagon subdivided into triangles.
(End)
		

Crossrefs

Cf. A304164.
First trisection of A002061 (without 1).

Programs

  • Julia
    [9*n^2-3*n+1 for n in 1:40] |> println # Bruno Berselli, May 10 2018
  • Maple
    seq(9*n^2-3*n+1, n = 1 .. 40);
  • PARI
    a(n) = 9*n^2-3*n+1; \\ Altug Alkan, May 09 2018
    
  • PARI
    Vec(x*(7 + 10*x + x^2)/(1 - x)^3 + O(x^40)) \\ Colin Barker, May 23 2018
    

Formula

From Bruno Berselli, May 10 2018: (Start)
O.g.f.: x*(7 + 10*x + x^2)/(1 - x)^3.
E.g.f.: -1 + (1 + 3*x)^2*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = A003215(n-1) + 6*A000290(n). - Leo Tavares, Jul 21 2022

A304165 a(n) = 324*n^2 - 336*n + 102 (n >= 1).

Original entry on oeis.org

90, 726, 2010, 3942, 6522, 9750, 13626, 18150, 23322, 29142, 35610, 42726, 50490, 58902, 67962, 77670, 88026, 99030, 110682, 122982, 135930, 149526, 163770, 178662, 194202, 210390, 227226, 244710, 262842, 281622, 301050, 321126, 341850, 363222, 385242, 407910, 431226, 455190, 479802, 505062
Offset: 1

Views

Author

Emeric Deutsch, May 09 2018

Keywords

Comments

a(n) is the first Zagreb index of the HcDN1(n) network (see Fig. 3 in the Hayat et al. manuscript).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of HcDN1(n) is M(HcDN1(n);x,y) = 6x^3*y^3 + 12(n-1)x^3*y^5 + 6nx^3*y^6 + 18(n-1)x^5*y^6 + (27n^2 -57n +30)x^6*y^6. - Emeric Deutsch, May 11 2018

Crossrefs

Programs

  • GAP
    List([1..40],n->324*n^2-336*n+102); # Muniru A Asiru, May 10 2018
  • Maple
    seq(324*n^2-336*n+102,n=1..40);
  • Mathematica
    Table[324n^2-336n+102,{n,40}] (* or *) LinearRecurrence[{3,-3,1},{90,726,2010},40] (* Harvey P. Dale, Apr 12 2020 *)
  • PARI
    a(n) = 324*n^2-336*n+102; \\ Altug Alkan, May 09 2018
    
  • PARI
    Vec(6*x*(15 + 76*x + 17*x^2) / (1 - x)^3 + O(x^60)) \\ Colin Barker, May 10 2018
    

Formula

From Colin Barker, May 10 2018: (Start)
G.f.: 6*x*(15 + 76*x + 17*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
E.g.f.: 6*(exp(x)*(17 - 2*x + 54*x^2) - 17). - Stefano Spezia, Apr 15 2023

A304166 a(n) = 972*n^2 - 1224*n + 414 with n > 0.

Original entry on oeis.org

162, 1854, 5490, 11070, 18594, 28062, 39474, 52830, 68130, 85374, 104562, 125694, 148770, 173790, 200754, 229662, 260514, 293310, 328050, 364734, 403362, 443934, 486450, 530910, 577314, 625662, 675954, 728190, 782370, 838494, 896562, 956574, 1018530, 1082430, 1148274, 1216062, 1285794, 1357470, 1431090, 1506654
Offset: 1

Views

Author

Emeric Deutsch, May 09 2018

Keywords

Comments

a(n) provides the second Zagreb index of the HcDN1(n) network (see Fig. 3 in the Hayat et al. paper).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of HcDN1(n) is M(HcDN1(n); x,y) = 6x^3*y^3 + 12(n-1)x^3*y^5 + 6nx^3*y^6 + 18(n-1)x^5*y^6 + (27n^2 - 57n + 30)x^6*y^6. - Emeric Deutsch, May 11 2018

Crossrefs

Programs

  • Maple
    seq(972*n^2-1224*n+414, n = 1 .. 40);
  • PARI
    a(n) = 972*n^2-1224*n+414; \\ Altug Alkan, May 09 2018
    
  • PARI
    Vec(18*x*(9 + 76*x + 23*x^2) / (1 - x)^3 + O(x^60)) \\ Colin Barker, May 10 2018

Formula

From Colin Barker, May 10 2018: (Start)
G.f.: 18*x*(9 + 76*x + 23*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
E.g.f.: 18*(exp(x)*(23 - 14*x + 54*x^2) - 23). - Stefano Spezia, Apr 15 2023
Showing 1-3 of 3 results.