cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304170 a(n) = 32*3^n + 18*2^n - 116 (n>=1).

Original entry on oeis.org

16, 244, 892, 2764, 8236, 24364, 72172, 214444, 638956, 1907884, 5705452, 17079724, 51165676, 153349804, 459754732, 1378674604, 4134844396, 12402174124, 37201804012, 111595975084, 334769051116, 1004269404844, 3012732717292, 9038047157164, 27113839481836, 81340914465964, 244021535438572, 732062190396844
Offset: 0

Views

Author

Emeric Deutsch, May 11 2018

Keywords

Comments

For n>=2, a(n) is the second Zagreb index of the Sierpinski Gasket Rhombus graph SR[n] (see the Antony Xavier et al. reference).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of the Sierpinski Gasket Rhombus graph SR[n] is M(SR[n]; x,y) = 4*x^2*y^4 + 4*x^3*y^4 +2*x^3*y^6 + (2*3^n - 3*2^n - 4)*x^4*y^4 + (2^{n+1} - 4)*x^4*y^6 + (2^{n-1} - 2)*x^6*y^6.

Crossrefs

Cf. A304169.

Programs

  • Maple
    seq(32*3^n+18*2^n-116, n = 1 .. 40);
  • Mathematica
    CoefficientList[Series[4*(4 + 37*x - 99*x^2)/((1 - x)*(1 - 2*x)*(1 - 3*x)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jan 20 2024 *)
    LinearRecurrence[{6,-11,6},{16,244,892},30] (* Harvey P. Dale, Feb 13 2024 *)
  • PARI
    Vec(4*(4 + 37*x - 99*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, May 12 2018

Formula

From Colin Barker, May 12 2018: (Start)
G.f.: 4*(4 + 37*x - 99*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>2.
(End)