A304170 a(n) = 32*3^n + 18*2^n - 116 (n>=1).
16, 244, 892, 2764, 8236, 24364, 72172, 214444, 638956, 1907884, 5705452, 17079724, 51165676, 153349804, 459754732, 1378674604, 4134844396, 12402174124, 37201804012, 111595975084, 334769051116, 1004269404844, 3012732717292, 9038047157164, 27113839481836, 81340914465964, 244021535438572, 732062190396844
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- D. Antony Xavier, M. Rosary, and Andrew Arokiaraj, Topological properties of Sierpinski Gasket Rhombus graphs, International J. of Mathematics and Soft Computing, 4, No. 2, 2014, 95-104.
- Index entries for linear recurrences with constant coefficients, signature (6,-11,6).
Crossrefs
Cf. A304169.
Programs
-
Maple
seq(32*3^n+18*2^n-116, n = 1 .. 40);
-
Mathematica
CoefficientList[Series[4*(4 + 37*x - 99*x^2)/((1 - x)*(1 - 2*x)*(1 - 3*x)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jan 20 2024 *) LinearRecurrence[{6,-11,6},{16,244,892},30] (* Harvey P. Dale, Feb 13 2024 *)
-
PARI
Vec(4*(4 + 37*x - 99*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, May 12 2018
Formula
From Colin Barker, May 12 2018: (Start)
G.f.: 4*(4 + 37*x - 99*x^2) / ((1 - x)*(1 - 2*x)*(1 - 3*x)).
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>2.
(End)
Comments