A304203 If n = Product (p_j^k_j) then a(n) = Product (p_j^prime(k_j)).
1, 4, 9, 8, 25, 36, 49, 32, 27, 100, 121, 72, 169, 196, 225, 128, 289, 108, 361, 200, 441, 484, 529, 288, 125, 676, 243, 392, 841, 900, 961, 2048, 1089, 1156, 1225, 216, 1369, 1444, 1521, 800, 1681, 1764, 1849, 968, 675, 2116, 2209, 1152, 343, 500, 2601, 1352, 2809, 972, 3025
Offset: 1
Examples
a(12) = a(2^2*3^1) = 2^prime(2)*3^prime(1) = 2^3*3^2 = 72.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Ilya Gutkovskiy, Scatter plot of a(n) up to n=50000.
- Index entries for sequences computed from exponents in factorization of n.
Crossrefs
Programs
-
Maple
a:= n-> mul(i[1]^ithprime(i[2]), i=ifactors(n)[2]): seq(a(n), n=1..55); # Alois P. Heinz, Jan 20 2021
-
Mathematica
a[n_] := Times @@ (#[[1]]^Prime[#[[2]]] & /@ FactorInteger[n]); Table[a[n], {n, 55}]
-
PARI
a(n) = my(f=factor(n)); prod(k=1, #f~, f[k,1]^prime(f[k,2])); \\ Michel Marcus, May 09 2018
-
PARI
apply( A304203(n)=factorback((n=factor(n))[,1],apply(prime,n[,2])), [1..50]) \\ M. F. Hasler, Nov 20 2018
Formula
a(prime(i)^k) = prime(i)^prime(k).
Multiplicative with a(p^e) = p^prime(e). - M. F. Hasler, Nov 20 2018
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=1} 1/p^prime(k)) = 1.80728269690724154161... . - Amiram Eldar, Jan 20 2024