cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304203 If n = Product (p_j^k_j) then a(n) = Product (p_j^prime(k_j)).

Original entry on oeis.org

1, 4, 9, 8, 25, 36, 49, 32, 27, 100, 121, 72, 169, 196, 225, 128, 289, 108, 361, 200, 441, 484, 529, 288, 125, 676, 243, 392, 841, 900, 961, 2048, 1089, 1156, 1225, 216, 1369, 1444, 1521, 800, 1681, 1764, 1849, 968, 675, 2116, 2209, 1152, 343, 500, 2601, 1352, 2809, 972, 3025
Offset: 1

Views

Author

Ilya Gutkovskiy, May 09 2018

Keywords

Examples

			a(12) = a(2^2*3^1) = 2^prime(2)*3^prime(1) = 2^3*3^2 = 72.
		

Crossrefs

Cf. A064988 (apply prime to p), A321874 (apply prime to both p & e).

Programs

  • Maple
    a:= n-> mul(i[1]^ithprime(i[2]), i=ifactors(n)[2]):
    seq(a(n), n=1..55);  # Alois P. Heinz, Jan 20 2021
  • Mathematica
    a[n_] := Times @@ (#[[1]]^Prime[#[[2]]] & /@ FactorInteger[n]); Table[a[n], {n, 55}]
  • PARI
    a(n) = my(f=factor(n)); prod(k=1, #f~, f[k,1]^prime(f[k,2])); \\ Michel Marcus, May 09 2018
    
  • PARI
    apply( A304203(n)=factorback((n=factor(n))[,1],apply(prime,n[,2])), [1..50]) \\ M. F. Hasler, Nov 20 2018

Formula

a(prime(i)^k) = prime(i)^prime(k).
a(A000040(k)) = A001248(k).
a(A001248(k)) = A030078(k).
a(A030078(k)) = A050997(k).
a(A002110(k)) = A061742(k).
Multiplicative with a(p^e) = p^prime(e). - M. F. Hasler, Nov 20 2018
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=1} 1/p^prime(k)) = 1.80728269690724154161... . - Amiram Eldar, Jan 20 2024