A304212 Number of partitions of n^3 into exactly n^2 parts.
1, 1, 5, 318, 112540, 139620591, 491579082022, 4303961368154069, 85434752794871493882, 3588523098005804563697043, 302194941264401427042462944147, 48844693123353655726678707534158535, 14615188708581196626576773497618986350642
Offset: 0
Keywords
Examples
n | Partitions of n^3 into exactly n^2 parts --+------------------------------------------------- 1 | 1. 2 | 5+1+1+1 = 4+2+1+1 = 3+3+1+1 = 3+2+2+1 = 2+2+2+2.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..50 (terms n = 0..30 from Seiichi Manyama)
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, b(n, i-1)+b(n-i, min(i, n-i))) end: a:= n-> b(n^3-n^2, n^2): seq(a(n), n=0..15); # Alois P. Heinz, May 08 2018
-
Mathematica
$RecursionLimit = 2000; b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1]+b[n-i, Min[i, n-i]]]; a[n_] := b[n^3 - n^2, n^2]; a /@ Range[0, 15] (* Jean-François Alcover, Nov 15 2020, after Alois P. Heinz *)
-
PARI
{a(n) = polcoeff(prod(k=1, n^2, 1/(1-x^k+x*O(x^(n^3-n^2)))), n^3-n^2)}
-
Python
import sys from functools import lru_cache sys.setrecursionlimit(10**6) @lru_cache(maxsize=None) def b(n,i): return 1 if n == 0 or i == 1 else b(n,i-1)+b(n-i,min(i,n-i)) def A304212(n): return b(n**3-n**2,n**2) # Chai Wah Wu, Sep 09 2021, after Alois P. Heinz
Formula
a(n) = [x^(n^3-n^2)] Product_{k=1..n^2} 1/(1-x^k).