cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304212 Number of partitions of n^3 into exactly n^2 parts.

Original entry on oeis.org

1, 1, 5, 318, 112540, 139620591, 491579082022, 4303961368154069, 85434752794871493882, 3588523098005804563697043, 302194941264401427042462944147, 48844693123353655726678707534158535, 14615188708581196626576773497618986350642
Offset: 0

Views

Author

Seiichi Manyama, May 08 2018

Keywords

Examples

			n | Partitions of n^3 into exactly n^2 parts
--+-------------------------------------------------
1 | 1.
2 | 5+1+1+1 = 4+2+1+1 = 3+3+1+1 = 3+2+2+1 = 2+2+2+2.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1)+b(n-i, min(i, n-i)))
        end:
    a:= n-> b(n^3-n^2, n^2):
    seq(a(n), n=0..15);  # Alois P. Heinz, May 08 2018
  • Mathematica
    $RecursionLimit = 2000;
    b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1]+b[n-i, Min[i, n-i]]];
    a[n_] := b[n^3 - n^2, n^2]; a /@ Range[0, 15] (* Jean-François Alcover, Nov 15 2020, after Alois P. Heinz *)
  • PARI
    {a(n) = polcoeff(prod(k=1, n^2, 1/(1-x^k+x*O(x^(n^3-n^2)))), n^3-n^2)}
    
  • Python
    import sys
    from functools import lru_cache
    sys.setrecursionlimit(10**6)
    @lru_cache(maxsize=None)
    def b(n,i): return 1 if n == 0 or i == 1 else b(n,i-1)+b(n-i,min(i,n-i))
    def A304212(n): return b(n**3-n**2,n**2) # Chai Wah Wu, Sep 09 2021, after Alois P. Heinz

Formula

a(n) = [x^(n^3-n^2)] Product_{k=1..n^2} 1/(1-x^k).