cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304236 Triangle T(n,k) = T(n-1,k) + 3*T(n-2,k-1) for k = 0..floor(n/2), with T(0,0) = 1, T(n,k) = 0 for n or k < 0, read by rows.

Original entry on oeis.org

1, 1, 1, 3, 1, 6, 1, 9, 9, 1, 12, 27, 1, 15, 54, 27, 1, 18, 90, 108, 1, 21, 135, 270, 81, 1, 24, 189, 540, 405, 1, 27, 252, 945, 1215, 243, 1, 30, 324, 1512, 2835, 1458, 1, 33, 405, 2268, 5670, 5103, 729, 1, 36, 495, 3240, 10206, 13608, 5103, 1, 39, 594, 4455, 17010, 30618, 20412, 2187
Offset: 0

Views

Author

Zagros Lalo, May 08 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-right in center-justified triangle given in A013610 ((1+3*x)^n).
The coefficients in the expansion of 1/(1-x-3x^2) are given by the sequence generated by the row sums.

Examples

			Triangle begins:
  1;
  1;
  1,  3;
  1,  6;
  1,  9,   9;
  1, 12,  27;
  1, 15,  54,   27;
  1, 18,  90,  108;
  1, 21, 135,  270,    81;
  1, 24, 189,  540,   405;
  1, 27, 252,  945,  1215,   243;
  1, 30, 324, 1512,  2835,  1458;
  1, 33, 405, 2268,  5670,  5103,   729;
  1, 36, 495, 3240, 10206, 13608,  5103;
  1, 39, 594, 4455, 17010, 30618, 20412, 2187;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 88, 363.

Crossrefs

Row sums give A006130.
Cf. A013610.
Sequences of the form 3^k*binomial(n-(q-1)*k, k): A013610 (q=1), this sequence (q=2), A317496 (q=3), A318772 (q=4).

Programs

  • Magma
    /* As triangle */ [[3^k*Binomial(n-k,k): k in [0..Floor(n/2)]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 05 2018
    
  • Maple
    seq(seq( 3^k*binomial(n-k,k), k=0..floor(n/2)), n=0..24); # G. C. Greubel, May 12 2021
  • Mathematica
    T[0, 0] = 1; T[n_, k_]:= If[n<0 || k<0, 0, T[n-1, k] + 3*T[n-2, k-1]]; Table[T[n, k], {n, 0, 14}, {k, 0, Floor[n/2]}]//Flatten
    Table[3^k Binomial[n-k, k], {n, 0, 14}, {k, 0, Floor[n/2]}]//Flatten
  • PARI
    T(n,k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, T(n-1,k) + 3*T(n-2,k-1)));
    tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 10 2018
    
  • Sage
    flatten([[3^k*binomial(n-k,k) for k in (0..n//2)] for n in (0..24)]) # G. C. Greubel, May 12 2021

Formula

T(n,k) = 3^k*binomial(n-k,k), n >= 0, 0 <= k <= floor(n/2).