A304236 Triangle T(n,k) = T(n-1,k) + 3*T(n-2,k-1) for k = 0..floor(n/2), with T(0,0) = 1, T(n,k) = 0 for n or k < 0, read by rows.
1, 1, 1, 3, 1, 6, 1, 9, 9, 1, 12, 27, 1, 15, 54, 27, 1, 18, 90, 108, 1, 21, 135, 270, 81, 1, 24, 189, 540, 405, 1, 27, 252, 945, 1215, 243, 1, 30, 324, 1512, 2835, 1458, 1, 33, 405, 2268, 5670, 5103, 729, 1, 36, 495, 3240, 10206, 13608, 5103, 1, 39, 594, 4455, 17010, 30618, 20412, 2187
Offset: 0
Examples
Triangle begins: 1; 1; 1, 3; 1, 6; 1, 9, 9; 1, 12, 27; 1, 15, 54, 27; 1, 18, 90, 108; 1, 21, 135, 270, 81; 1, 24, 189, 540, 405; 1, 27, 252, 945, 1215, 243; 1, 30, 324, 1512, 2835, 1458; 1, 33, 405, 2268, 5670, 5103, 729; 1, 36, 495, 3240, 10206, 13608, 5103; 1, 39, 594, 4455, 17010, 30618, 20412, 2187;
References
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 88, 363.
Links
- G. C. Greubel, Rows n = 0..100 of the irregular triangle, flattened
- Zagros Lalo, Left-justified triangle
- Zagros Lalo, Skew diagonals in center-justified triangle of coefficients in expansion of (1+3x)^n
Crossrefs
Programs
-
Magma
/* As triangle */ [[3^k*Binomial(n-k,k): k in [0..Floor(n/2)]]: n in [0.. 15]]; // Vincenzo Librandi, Sep 05 2018
-
Maple
seq(seq( 3^k*binomial(n-k,k), k=0..floor(n/2)), n=0..24); # G. C. Greubel, May 12 2021
-
Mathematica
T[0, 0] = 1; T[n_, k_]:= If[n<0 || k<0, 0, T[n-1, k] + 3*T[n-2, k-1]]; Table[T[n, k], {n, 0, 14}, {k, 0, Floor[n/2]}]//Flatten Table[3^k Binomial[n-k, k], {n, 0, 14}, {k, 0, Floor[n/2]}]//Flatten
-
PARI
T(n,k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, T(n-1,k) + 3*T(n-2,k-1))); tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 10 2018
-
Sage
flatten([[3^k*binomial(n-k,k) for k in (0..n//2)] for n in (0..24)]) # G. C. Greubel, May 12 2021
Formula
T(n,k) = 3^k*binomial(n-k,k), n >= 0, 0 <= k <= floor(n/2).
Comments