A304249 Triangle T(n,k) = 3*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2), with T(0,0) = 1 and T(n,k) = 0 for n < 0 or k < 0, read by rows.
1, 3, 9, 1, 27, 6, 81, 27, 1, 243, 108, 9, 729, 405, 54, 1, 2187, 1458, 270, 12, 6561, 5103, 1215, 90, 1, 19683, 17496, 5103, 540, 15, 59049, 59049, 20412, 2835, 135, 1, 177147, 196830, 78732, 13608, 945, 18, 531441, 649539, 295245, 61236, 5670, 189, 1
Offset: 0
Examples
Triangle begins: 1; 3; 9, 1; 27, 6; 81, 27, 1; 243, 108, 9; 729, 405, 54, 1; 2187, 1458, 270, 12; 6561, 5103, 1215, 90, 1; 19683, 17496, 5103, 540, 15; 59049, 59049, 20412, 2835, 135, 1; 177147, 196830, 78732, 13608, 945, 18; 531441, 649539, 295245, 61236, 5670, 189, 1; 1594323, 2125764, 1082565, 262440, 30618, 1512, 21; 4782969, 6908733, 3897234, 1082565, 153090, 10206, 252, 1; 14348907, 22320522, 13817466, 4330260, 721710, 61236, 2268, 24; 43046721, 71744535, 48361131, 16888014, 3247695, 336798, 17010, 324, 1; 129140163, 229582512, 167403915, 64481508, 14073345, 1732104, 112266, 3240, 27;
References
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 86, 363.
Links
- Zagros Lalo, Left justified triangle
- Zagros Lalo, Skew diagonals in center-justified triangle of coefficients in expansion of (1+3x)^n
Crossrefs
Programs
-
Magma
[3^(n-2*k)*Binomial(n-k,k): k in [0..Floor(n/2)], n in [0..24]]; // G. C. Greubel, May 12 2021
-
Mathematica
T[0, 0] = 1; T[n_, k_]:= If[n<0 || k<0, 0, 3T[n-1, k] + T[n-2, k-1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}]//Flatten With[{q=2}, Table[3^(n-q*k)*Binomial[n-(q-1)*k, k], {n,0,24}, {k,0,Floor[n/q]}] ]//Flatten (* G. C. Greubel, May 12 2021 *)
-
PARI
T(n,k)=if( n>0 && k>0, 3*T(n-1, k) + T(n-2, k-1), !n && !k) tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 10 2018
-
Sage
flatten([[3^(n-2*k)*binomial(n-k,k) for k in (0..n//2)] for n in (0..24)]) # G. C. Greubel, May 12 2021
Formula
T(n,k) = A013610(n-k, n-2k). - M. F. Hasler, Jun 01 2018
Comments