cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304249 Triangle T(n,k) = 3*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2), with T(0,0) = 1 and T(n,k) = 0 for n < 0 or k < 0, read by rows.

Original entry on oeis.org

1, 3, 9, 1, 27, 6, 81, 27, 1, 243, 108, 9, 729, 405, 54, 1, 2187, 1458, 270, 12, 6561, 5103, 1215, 90, 1, 19683, 17496, 5103, 540, 15, 59049, 59049, 20412, 2835, 135, 1, 177147, 196830, 78732, 13608, 945, 18, 531441, 649539, 295245, 61236, 5670, 189, 1
Offset: 0

Views

Author

Zagros Lalo, May 08 2018

Keywords

Comments

The numbers in rows of the triangle are along skew diagonals pointing top-left in center-justified triangle given in A013610 ((1+3*x)^n), cf. formula.
The coefficients in the expansion of 1/(1-3x-x^2) are given by the sequence generated by the row sums.
The sequence of the row sums are the "Bronze Fibonacci numbers" A006190, and the limit of their ratio is 3.30277563773... (Bronze ratio), see A098316.

Examples

			Triangle begins:
          1;
          3;
          9,         1;
         27,         6;
         81,        27,         1;
        243,       108,         9;
        729,       405,        54,        1;
       2187,      1458,       270,       12;
       6561,      5103,      1215,       90,        1;
      19683,     17496,      5103,      540,       15;
      59049,     59049,     20412,     2835,      135,       1;
     177147,    196830,     78732,    13608,      945,      18;
     531441,    649539,    295245,    61236,     5670,     189,      1;
    1594323,   2125764,   1082565,   262440,    30618,    1512,     21;
    4782969,   6908733,   3897234,  1082565,   153090,   10206,    252,    1;
   14348907,  22320522,  13817466,  4330260,   721710,   61236,   2268,   24;
   43046721,  71744535,  48361131, 16888014,  3247695,  336798,  17010,  324,  1;
  129140163, 229582512, 167403915, 64481508, 14073345, 1732104, 112266, 3240, 27;
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 86, 363.

Crossrefs

Row sums give A006190.
Sequences of the form 3^(n-q*k)*binomial(n-(q-1)*k, k): A027465 (q=1), this sequence (q=2), A317497 (q=3), A318773 (q=4).

Programs

  • Magma
    [3^(n-2*k)*Binomial(n-k,k): k in [0..Floor(n/2)], n in [0..24]]; // G. C. Greubel, May 12 2021
    
  • Mathematica
    T[0, 0] = 1; T[n_, k_]:= If[n<0 || k<0, 0, 3T[n-1, k] + T[n-2, k-1]];
    Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}]//Flatten
    With[{q=2}, Table[3^(n-q*k)*Binomial[n-(q-1)*k, k], {n,0,24}, {k,0,Floor[n/q]}] ]//Flatten (* G. C. Greubel, May 12 2021 *)
  • PARI
    T(n,k)=if( n>0 && k>0, 3*T(n-1, k) + T(n-2, k-1), !n && !k)
    tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 10 2018
    
  • Sage
    flatten([[3^(n-2*k)*binomial(n-k,k) for k in (0..n//2)] for n in (0..24)]) # G. C. Greubel, May 12 2021

Formula

T(n,k) = A013610(n-k, n-2k). - M. F. Hasler, Jun 01 2018