cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A304253 Numbers k such that k = Product (p_j^e_j) = Sum (prime(p_j)^e_j).

Original entry on oeis.org

20, 68, 76, 92, 8248
Offset: 1

Views

Author

Ilya Gutkovskiy, May 09 2018

Keywords

Comments

Fixed points of A304251.

Examples

			68 is a term because 68 = 2^2*17 = prime(1)^2*prime(7) = prime(prime(1))^2 + prime(prime(7)).
8248 is a term because 8248 = 2^3*1031 = prime(1)^3*prime(173) = prime(prime(1))^3 + prime(prime(173)).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Plus @@ (Prime[#[[1]]]^#[[2]] & /@ FactorInteger[n]); Select[Range[10000], a[#] == # &]
  • PARI
    isok(n) = my(f=factor(n)); n == sum(k=1, #f~, prime(f[k,1])^f[k,2]); \\ Michel Marcus, May 09 2018

A322177 If n = Product (p_j^k_j) then a(n) = Sum (prime(p_j)^prime(k_j)).

Original entry on oeis.org

0, 9, 25, 27, 121, 34, 289, 243, 125, 130, 961, 52, 1681, 298, 146, 2187, 3481, 134, 4489, 148, 314, 970, 6889, 268, 1331, 1690, 3125, 316, 11881, 155, 16129, 177147, 986, 3490, 410, 152, 24649, 4498, 1706, 364, 32041, 323, 36481, 988, 246, 6898, 44521, 2212, 4913, 1340
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 30 2018

Keywords

Examples

			a(12) = a(2^2 * 3^1) = prime(2)^prime(2) + prime(3)^prime(1) = 3^3 + 5^2 = 52.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Plus @@ (Prime[#[[1]]]^Prime[#[[2]]] & /@ FactorInteger[n]); a[1] = 0; Table[a[n], {n, 50}]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = prime(f[k,1])^prime(f[k,2]);); vecsum(f[,1]); \\ Michel Marcus, Nov 30 2018
Showing 1-2 of 2 results.