A304275 a(n) = Sum_{k = 1..n} gcd(k,n) / cos(Pi*k/n)^2 for odd n.
1, 11, 29, 55, 105, 131, 181, 319, 305, 379, 605, 551, 745, 963, 869, 991, 1441, 1595, 1405, 1991, 1721, 1891, 3045, 2255, 2737, 3355, 2861, 3799, 4169, 3539, 3781, 5775, 5249, 4555, 6061, 5111, 5401, 8195, 7205, 6319, 8721, 6971, 8845
Offset: 1
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..1000
- Nikolai Osipov (Proposer), Problem 12003, Amer. Math. Monthly 124 (No. 8, Oct. 2017), page 754.
- Nikolay Osipov, Proposer's solution to Problem 12003
Programs
-
Maple
seq( round( add(igcd(k, 2*n+1)/cos(Pi*k/(2*n+1))^2, k = 1..2*n+1) ), n = 0..40); # Peter Bala, Dec 26 2023
-
Mathematica
f[p_, e_] := p^(e-1)*(p^e*(p+1)-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[2*n - 1]; Array[a, 50] (* Amiram Eldar, Dec 28 2023 *)
-
PARI
a(n) = n = 2*n-1; round(sum(k=1, n, gcd(k,n) / cos(Pi*k/n)^2)); \\ Michel Marcus, May 10 2018
Formula
a(n) = A069097(2*n-1). - Peter Bala, Dec 26 2023
a(n) = (1/3)*Sum_{k = 1..4*n-2} (-1)^k*gcd(k,4*n-2)^2. - Conjectured by Peter Bala, Dec 26 2023; proved by Nikolay Osipov, Oct 05 2024
Sum_{k=1..n} a(k) ~ c * n^3, where c = 4*Pi^2 / (21*zeta(3)) = 1.563923... . - Amiram Eldar, Dec 28 2023