cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304275 a(n) = Sum_{k = 1..n} gcd(k,n) / cos(Pi*k/n)^2 for odd n.

Original entry on oeis.org

1, 11, 29, 55, 105, 131, 181, 319, 305, 379, 605, 551, 745, 963, 869, 991, 1441, 1595, 1405, 1991, 1721, 1891, 3045, 2255, 2737, 3355, 2861, 3799, 4169, 3539, 3781, 5775, 5249, 4555, 6061, 5111, 5401, 8195, 7205, 6319, 8721, 6971, 8845
Offset: 1

Views

Author

Hugo Pfoertner, May 10 2018

Keywords

Crossrefs

Programs

  • Maple
    seq( round( add(igcd(k, 2*n+1)/cos(Pi*k/(2*n+1))^2, k = 1..2*n+1) ), n = 0..40); # Peter Bala, Dec 26 2023
  • Mathematica
    f[p_, e_] := p^(e-1)*(p^e*(p+1)-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[2*n - 1]; Array[a, 50] (* Amiram Eldar, Dec 28 2023 *)
  • PARI
    a(n) = n = 2*n-1; round(sum(k=1, n, gcd(k,n) / cos(Pi*k/n)^2)); \\ Michel Marcus, May 10 2018

Formula

a(n) = A069097(2*n-1). - Peter Bala, Dec 26 2023
a(n) = (1/3)*Sum_{k = 1..4*n-2} (-1)^k*gcd(k,4*n-2)^2. - Conjectured by Peter Bala, Dec 26 2023; proved by Nikolay Osipov, Oct 05 2024
Sum_{k=1..n} a(k) ~ c * n^3, where c = 4*Pi^2 / (21*zeta(3)) = 1.563923... . - Amiram Eldar, Dec 28 2023