A304336 T(n, k) = Sum_{j=0..k} (-1)^j*binomial(2*k, j)*(k - j)^(2*n)/(k!)^2, triangle read by rows, n >= 0 and 0 <= k <= n.
1, 0, 1, 0, 1, 3, 0, 1, 15, 10, 0, 1, 63, 140, 35, 0, 1, 255, 1470, 1050, 126, 0, 1, 1023, 14080, 21945, 6930, 462, 0, 1, 4095, 130130, 400400, 252252, 42042, 1716, 0, 1, 16383, 1184820, 6861855, 7747740, 2438436, 240240, 6435
Offset: 0
Examples
Triangle starts: [0] 1; [1] 0, 1; [2] 0, 1, 3; [3] 0, 1, 15, 10; [4] 0, 1, 63, 140, 35; [5] 0, 1, 255, 1470, 1050, 126; [6] 0, 1, 1023, 14080, 21945, 6930, 462; [7] 0, 1, 4095, 130130, 400400, 252252, 42042, 1716; [8] 0, 1, 16383, 1184820, 6861855, 7747740, 2438436, 240240, 6435;
Crossrefs
Programs
-
Maple
A304336 := (n, k) -> add((-1)^j*binomial(2*k,j)*(k-j)^(2*n), j=0..k)/(k!)^2: for n from 0 to 8 do seq(A304336(n, k), k=0..n) od;
-
PARI
T(n, k) = sum(j=0, k, (-1)^j*binomial(2*k, j)*(k - j)^(2*n))/(k!)^2; tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 11 2018