cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304336 T(n, k) = Sum_{j=0..k} (-1)^j*binomial(2*k, j)*(k - j)^(2*n)/(k!)^2, triangle read by rows, n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 0, 1, 15, 10, 0, 1, 63, 140, 35, 0, 1, 255, 1470, 1050, 126, 0, 1, 1023, 14080, 21945, 6930, 462, 0, 1, 4095, 130130, 400400, 252252, 42042, 1716, 0, 1, 16383, 1184820, 6861855, 7747740, 2438436, 240240, 6435
Offset: 0

Views

Author

Peter Luschny, May 11 2018

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1,     3;
[3] 0, 1,    15,      10;
[4] 0, 1,    63,     140,      35;
[5] 0, 1,   255,    1470,    1050,     126;
[6] 0, 1,  1023,   14080,   21945,    6930,     462;
[7] 0, 1,  4095,  130130,  400400,  252252,   42042,   1716;
[8] 0, 1, 16383, 1184820, 6861855, 7747740, 2438436, 240240, 6435;
		

Crossrefs

Row sums are A304338, T(n,n) = A088218 and A001700, T(n,n-1) ~ A002803, T(n,2) ~ A024036, T(n,3) ~ bisection of A174395.

Programs

  • Maple
    A304336 := (n, k) -> add((-1)^j*binomial(2*k,j)*(k-j)^(2*n), j=0..k)/(k!)^2:
    for n from 0 to 8 do seq(A304336(n, k), k=0..n) od;
  • PARI
    T(n, k) = sum(j=0, k, (-1)^j*binomial(2*k, j)*(k - j)^(2*n))/(k!)^2;
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 11 2018

Formula

T(n, k) = A304330(n, k)/(k!)^2.
T(n, k) = A304334(n, k)/k!.