A304409 If n = Product (p_j^k_j) then a(n) = Product (p_j*(k_j + 1)).
1, 4, 6, 6, 10, 24, 14, 8, 9, 40, 22, 36, 26, 56, 60, 10, 34, 36, 38, 60, 84, 88, 46, 48, 15, 104, 12, 84, 58, 240, 62, 12, 132, 136, 140, 54, 74, 152, 156, 80, 82, 336, 86, 132, 90, 184, 94, 60, 21, 60, 204, 156, 106, 48, 220, 112, 228, 232, 118, 360, 122, 248, 126, 14, 260
Offset: 1
Examples
a(12) = a(2^2*3) = 2*(2 + 1) * 3*(1 + 1) = 36.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Ilya Gutkovskiy, Scatter plot of a(n) up to n=50000.
- Vaclav Kotesovec, Graph - the asymptotic ratio (100000 terms)
- Index entries for sequences computed from exponents in factorization of n.
- Index entries for sequences computed from indices in prime factorization.
Crossrefs
Programs
-
Mathematica
a[n_] := Times @@ (#[[1]] (#[[2]] + 1) & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 65}] Table[DivisorSigma[0, n] Last[Select[Divisors[n], SquareFreeQ]], {n, 65}]
-
PARI
a(n)={numdiv(n)*factorback(factorint(n)[, 1])} \\ Andrew Howroyd, Jul 24 2018
Formula
a(p^k) = p*(k + 1) where p is a prime and k > 0.
Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 + 2/p^(s-1) - 2/p^s - 1/p^(2*s-1) + 1/p^(2*s)). - Amiram Eldar, Sep 17 2023
From Vaclav Kotesovec, Jun 06 2025: (Start)
Let f(s) = Product_{p prime} (1 - 1/p^(2*s-1) + 2/p^(s-1) + 1/p^(2*s) - 2/p^s) * ((p^s - p)/(p^s - 1))^2.
Dirichlet g.f.: zeta(s-1)^2 * f(s).
Sum_{k=1..n} a(k) ~ ((2*log(n) + 4*gamma - 1)*f(2) + 2*f'(2)) * n^2/4, where
f(2) = Product_{p prime} (1 - (3*p^2 + p - 1)/(p^2 * (p+1)^2)) = 0.40693068229776748114138817391056656864938379...,
f'(2) = f(2) * Sum_{p prime} 2*(3*p^4-3*p^2+1) * log(p) / ((p-1)*(p+1)*(p^4+2*p^3-2*p^2-p+1)) = f(2) * 2.2612432627709318567813765271568350301741329636853...
and gamma is the Euler-Mascheroni constant A001620. (End)