cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304506 a(n) = 2*(3*n+1)*(9*n+8).

Original entry on oeis.org

16, 136, 364, 700, 1144, 1696, 2356, 3124, 4000, 4984, 6076, 7276, 8584, 10000, 11524, 13156, 14896, 16744, 18700, 20764, 22936, 25216, 27604, 30100, 32704, 35416, 38236, 41164, 44200, 47344, 50596, 53956, 57424, 61000, 64684, 68476, 72376, 76384, 80500, 84724, 89056
Offset: 0

Views

Author

Emeric Deutsch, May 14 2018

Keywords

Comments

a(n) is the second Zagreb index of the single-defect 4-gonal nanocone CNC(4,n) (see definition in the Doslic et al. reference, p. 27).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of CNC(4,n) is M(CNC(4,n);x,y) = 4*x^2*y^2 + 8*n*x^2*y^3 + 2*n*(3*n+1)*x^3*y^3.
More generally, the M-polynomial of CNC(k,n) is M(CNC(k,n); x,y) = k*x^2*y^2 + 2*k*n*x^2*y^3 + k*n*(3*n + 1)*x^3*y^3/2.
6*a(n) + 25 is a square. - Bruno Berselli, May 14 2018

Crossrefs

Programs

  • GAP
    List([0..50],n->2*(3*n+1)*(9*n+8)); # Muniru A Asiru, May 14 2018
    
  • Maple
    seq((2*(9*n+8))*(3*n+1), n = 0 .. 40);
  • Mathematica
    Table[2(3n+1)(9n+8),{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{16,136,364},50] (* Harvey P. Dale, Aug 15 2022 *)
  • PARI
    a(n) = 2*(3*n+1)*(9*n+8); \\ Altug Alkan, May 14 2018
    
  • PARI
    Vec(4*(4 + 22*x + x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018

Formula

From Colin Barker, May 14 2018: (Start)
G.f.: 4*(4 + 22*x + x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: 2*exp(x)*(8 + 60*x + 27*x^2).
a(n) = A016933(n)*A017257(n). (End)