cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304579 a(n) = (n^2 + 1)*(n^2 + 2).

Original entry on oeis.org

2, 6, 30, 110, 306, 702, 1406, 2550, 4290, 6806, 10302, 15006, 21170, 29070, 39006, 51302, 66306, 84390, 105950, 131406, 161202, 195806, 235710, 281430, 333506, 392502, 459006, 533630, 617010, 709806, 812702, 926406, 1051650, 1189190, 1339806, 1504302, 1683506
Offset: 0

Views

Author

Vincenzo Librandi, May 17 2018

Keywords

Comments

a(n) and A304578(n) are coprime for all n.

Crossrefs

Subsequence of A002378, A045619, A279019.

Programs

  • Magma
    [(n^2+1)*(n^2+2): n in [0..40]];
    
  • Mathematica
    CoefficientList[Series[2 (1 - 2 x + 10 x^2 + 3 x^4) / (1 - x)^5, {x, 0, 35}], x] (* or *) Table[(n^2 + 1) (n^2 + 2), {n, 0, 40}]
    LinearRecurrence[{5,-10,10,-5,1},{2,6,30,110,306},40] (* Harvey P. Dale, Nov 13 2022 *)
  • PARI
    a(n) = my(k=n^2+1); k*(k+1); \\ Altug Alkan, May 17 2018

Formula

G.f.: 2*(1 - 2*x + 10*x^2 + 3*x^4)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = A002378(A002522(n)). - Altug Alkan, May 17 2018
Sum_{n>=0} 1/a(n) = 1/4 + coth(Pi)*Pi/2 - coth(sqrt(2)*Pi)*Pi/(2*sqrt(2)). - Amiram Eldar, Feb 24 2023